cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A386464 Decimal expansion of the volume of an augmented truncated dodecahedron with unit edges.

Original entry on oeis.org

8, 7, 3, 6, 3, 7, 0, 9, 8, 7, 7, 7, 0, 4, 0, 7, 4, 6, 8, 5, 6, 1, 9, 1, 0, 0, 1, 2, 5, 1, 4, 1, 6, 7, 7, 1, 0, 1, 0, 0, 5, 8, 5, 5, 1, 1, 5, 4, 6, 6, 7, 2, 9, 2, 4, 9, 8, 1, 9, 0, 0, 2, 5, 5, 2, 8, 9, 6, 3, 8, 2, 0, 7, 7, 4, 9, 8, 8, 8, 2, 5, 4, 6, 4, 7, 5, 2, 2, 5, 1
Offset: 2

Views

Author

Paolo Xausa, Jul 25 2025

Keywords

Comments

The augmented truncated dodecahedron is Johnson solid J_68.

Examples

			87.3637098777040746856191001251416771010058551...
		

Crossrefs

Cf. A386465 (surface area).

Programs

  • Mathematica
    First[RealDigits[505/12 + 81/4*Sqrt[5], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J68", "Volume"], 10, 100]]

Formula

Equals 505/12 + 81*sqrt(5)/4 = 505/12 + 81*A204188.
Equals A377695 + A179590.
Equals the largest root of 36*x^2 - 3030*x - 10055.

A386543 Decimal expansion of the surface area of a parabiaugmented truncated dodecahedron with unit edges.

Original entry on oeis.org

1, 0, 3, 3, 7, 3, 4, 2, 4, 2, 8, 7, 3, 2, 5, 8, 4, 8, 6, 1, 1, 2, 3, 1, 1, 3, 5, 9, 1, 6, 9, 9, 4, 0, 0, 7, 5, 5, 1, 0, 5, 3, 3, 4, 1, 3, 3, 2, 0, 4, 3, 0, 6, 2, 0, 4, 4, 8, 1, 1, 6, 4, 8, 0, 1, 9, 3, 0, 8, 8, 1, 7, 8, 2, 3, 6, 1, 1, 2, 0, 5, 7, 0, 2, 1, 3, 8, 3, 2, 1
Offset: 3

Views

Author

Paolo Xausa, Jul 28 2025

Keywords

Comments

The parabiaugmented truncated dodecahedron is Johnson solid J_69.
Also the surface area of a metabiaugmented truncated dodecahedron (Johnson solid J_70) with unit edges.

Examples

			103.37342428732584861123113591699400755105334133204...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[(20 + 15*Sqrt[3] + 50*Sqrt[#] + Sqrt[5*#])/2 & [5 + Sqrt[20]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J69", "SurfaceArea"], 10, 100]]

Formula

Equals (20 + 15*sqrt(3) + 50*sqrt(5 + 2*sqrt(5)) + sqrt(5*(5 + 2*sqrt(5))))/2 = (20 + 15*A002194 + 50*sqrt(5 + A010476) + sqrt(5*(5 + A010476)))/2.
Equals the largest root of x^8 - 80*x^7 - 11400*x^6 + 796000*x^5 + 31475250*x^4 - 1804610000*x^3 - 8296459375*x^2 + 548931187500*x - 2544044046875.

A386545 Decimal expansion of the surface area of a triaugmented truncated dodecahedron with unit edges.

Original entry on oeis.org

1, 0, 4, 5, 6, 4, 7, 5, 6, 3, 5, 4, 4, 3, 7, 7, 7, 8, 6, 4, 4, 4, 7, 3, 7, 2, 9, 3, 8, 1, 1, 7, 2, 6, 8, 3, 0, 4, 9, 1, 2, 2, 4, 6, 6, 7, 1, 0, 4, 7, 1, 7, 5, 5, 0, 9, 1, 4, 9, 0, 6, 1, 0, 8, 2, 4, 7, 1, 0, 4, 4, 4, 8, 6, 5, 7, 1, 8, 4, 4, 4, 6, 8, 3, 6, 8, 5, 7, 1, 1
Offset: 3

Views

Author

Paolo Xausa, Jul 28 2025

Keywords

Comments

The triaugmented truncated dodecahedron is Johnson solid J_71.

Examples

			104.56475635443777864447372938117268304912246671047...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[(60 + 35*Sqrt[3] + 90*Sqrt[#] + 3*Sqrt[5*#])/4 & [5 + Sqrt[20]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J71", "SurfaceArea"], 10, 100]]

Formula

Equals (60 + 35*sqrt(3) + 90*sqrt(5 + 2*sqrt(5)) + 3*sqrt(5*(5 + 2*sqrt(5))))/4 = (60 + 35*A002194 + 90*sqrt(5 + A010476) + 3*sqrt(5*(5 + A010476)))/4.
Equals the largest root of 256*x^8 - 30720*x^7 - 1574400*x^6 + 238464000*x^5 + 68364000*x^4 - 390828240000*x^3 + 4437895162500*x^2 + 78660973125000*x - 1021409416546875.
Showing 1-3 of 3 results.