cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386468 The maximum exponent in the prime factorization of the largest exponentially squarefree divisor of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jul 22 2025

Keywords

Comments

First differs from A375428 at n = 64.
Differs from A368105 at n = 1, 36, 64, 72, 100, ... .
Except for a(1), all the terms are by definition squarefree numbers.

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{k = Max[FactorInteger[n][[;; , 2]]]}, While[! SquareFreeQ[k], k--]; k]; a[1] = 0; Array[a, 100]
  • PARI
    a(n) = if(n == 1, 0, my(k = vecmax(factor(n)[,2])); while(!issquarefree(k), k--); k);

Formula

a(n) = A051903(A365683(n)).
a(n) = A070321(A051903(n)) for n >= 2.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 + Sum_{k>=2} A378085(k-1)*(1-1/zeta(k)) = 1.66055078443790141429... .