A386478 Array read by upward antidiagonals: T(k,n) = 1 (k = 0, n >= 0), T(k,n) = k^2*n^2/2 - (3*k-4)*n/2 + 1 (k >= 1, n >= 0).
1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 3, 7, 7, 1, 1, 5, 14, 16, 11, 1, 1, 8, 25, 34, 29, 16, 1, 1, 12, 40, 61, 63, 46, 22, 1, 1, 17, 59, 97, 113, 101, 67, 29, 1, 1, 23, 82, 142, 179, 181, 148, 92, 37, 1, 1, 30, 109, 196, 261, 286, 265, 204, 121, 46, 1, 1, 38, 140, 259, 359, 416, 418, 365, 269, 154, 56, 1, 1, 47, 175, 331, 473, 571, 607, 575, 481, 343, 191, 67, 1
Offset: 0
Examples
Array begins (the rows are T(0,n>=0),, T(1,n>=0), T(2,n>=0), ...): 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 2, 4, 7, 11, 16, 22, 29, 37, ... 1, 2, 7, 16, 29, 46, 67, 92, 121, ... 1, 3, 14, 34, 63, 101, 148, 204, 269, ... 1, 5, 25, 61, 113, 181, 265, 365, 481, ... 1, 8, 40, 97, 179, 286, 418, 575, 757, ... 1, 12, 59, 142, 261, 416, 607, 834, 1097, ... 1, 17, 82, 196, 359, 571, 832, 1142, 1501, ... 1, 23, 109, 259, 473, 751, 1093, 1499, 1969, ... ... The first few antidiagonals are: 1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 3, 7, 7, 1, 1, 5, 14, 16, 11, 1, 1, 8, 25, 34, 29, 16, 1, 1, 12, 40, 61, 63, 46, 22, 1, ...
References
- David O. H. Cutler and N. J. A. Sloane, paper in preparation, August 1 2025.
Links
- Paolo Xausa, Table of n, a(n) for n = 0..11324 (first 150 antidiagonals, flattened).
Crossrefs
Programs
-
Mathematica
A386478[k_, n_] := If[k == 0, 1, ((k*n - 3)*k + 4)*n/2 + 1]; Table[A386478[k - n, n], {k, 0, 12}, {n, 0, k}] (* Paolo Xausa, Jul 26 2025 *)
Extensions
Row 0 added by N. J. A. Sloane, Jul 26 2025
Comments