A386481 Array read by upward antidiagonals: T(k,n) = 1 (k = 0, n >= 0), T(k,n) = binomial(n,2)*k^2 + n*(k-1) + 1 (k >= 1, n >= 0).
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 7, 4, 1, 1, 4, 14, 16, 7, 1, 1, 5, 23, 34, 29, 11, 1, 1, 6, 34, 58, 63, 46, 16, 1, 1, 7, 47, 88, 109, 101, 67, 22, 1, 1, 8, 62, 124, 167, 176, 148, 92, 29, 1, 1, 9, 79, 166, 237, 271, 259, 204, 121, 37, 1, 1, 10, 98, 214, 319, 386, 400, 358, 269, 154, 46, 1, 1, 11, 119, 268, 413, 521, 571, 554, 473, 343, 191, 56, 1
Offset: 0
Examples
Array begins (the rows are T(0,n>=0),, T(1,n>=0), T(2,n>=0), ...): 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 2, 4, 7, 11, 16, 22, 29, ... 1, 2, 7, 16, 29, 46, 67, 92, 121, ... 1, 3, 14, 34, 63, 101, 148, 204, 269, ... 1, 4, 23, 58, 109, 176, 259, 358, 473, ... 1, 5, 34, 88, 167, 271, 400, 554, 733, ... 1, 6, 47, 124, 237, 386, 571, 792, 1049, ... 1, 7, 62, 166, 319, 521, 772, 1072, 1421, ... ... The first few antidiagonals are: 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 7, 4, 1, 1, 4, 14, 16, 7, 1, 1, 5, 23, 34, 29, 11, 1, 1, 6, 34, 58, 63, 46, 16, 1, 1, 7, 47, 88, 109, 101, 67, 22, 1, ...
References
- David O. H. Cutler and N. J. A. Sloane, paper in preparation, August 1 2025.
Links
- N. J. A. Sloane, Illustration for T(3,2) = 14.
- N. J. A. Sloane, Illustration for T(3,3) = 34 (a 3-armed V is also known as a Wu).
Crossrefs
Extensions
Under construction, please do not touch.
Comments