This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386499 #15 Jul 31 2025 17:52:46 %S A386499 1,1,2,1,1,1,2,1,1,3,2,2,3,1,1,2,1,4,1,4,6,2,1,3,3,3,6,5,3,3,2,2,6,7, %T A386499 5,9,7,3,8,4,8,4,6,5,6,2,3,6,4,10,9,2,4,6,3,2,3,9,8,2,6,1,11,2,5,3,9, %U A386499 1,1,3,10,3,3,8,2,2,7,2,8,8,5,7,11,3,5,14 %N A386499 a(n) is the 5-adic valuation of A386252(n). %H A386499 Ken Clements, <a href="/A386499/b386499.txt">Table of n, a(n) for n = 1..4000</a> %F A386499 a(n) = A112765(A386252(n)). %e A386499 a(1) = 1 because A386252(1) = 2^1 * 3^1 * 5^1 %e A386499 a(2) = 1 because A386252(2) = 2^2 * 3^1 * 5^1 %e A386499 a(3) = 2 because A386252(3) = 2^1 * 3^1 * 5^2 %e A386499 a(4) = 1 because A386252(4) = 2^2 * 3^2 * 5^1 %t A386499 seq[max_] := IntegerExponent[Select[Table[2^i*3^j*5^k, {i, 1, Log2[max]}, {j, 1, Log[3, max/2^i]}, {k, 1, Log[5, max/(2^i*3^j)]}] // Flatten // Sort, And @@ PrimeQ[# + {-1, 1}] &], 5]; seq[10^12] (* _Amiram Eldar_, Jul 24 2025 *) %o A386499 (Python) %o A386499 from math import log10 %o A386499 from gmpy2 import is_prime %o A386499 l2, l3, l5 = log10(2), log10(3), log10(5) %o A386499 upto_digits = 100 %o A386499 sum_limit = 3 + int((upto_digits - l3 - l5)/l2) %o A386499 def TP_pi_3_upto_sum(limit): # Search all partitions up to the given exponent sum. %o A386499 unsorted_result = [] %o A386499 for exponent_sum in range(3, limit+1): %o A386499 for i in range(1, exponent_sum -1): %o A386499 for j in range(1, exponent_sum - i): %o A386499 k = exponent_sum - i - j %o A386499 log_N = i*l2 + j*l3 + k*l5 %o A386499 if log_N <= upto_digits: %o A386499 N = 2**i * 3**j * 5**k %o A386499 if is_prime(N-1) and is_prime(N+1): %o A386499 unsorted_result.append((k, log_N)) %o A386499 sorted_result = sorted(unsorted_result, key=lambda x: x[1]) %o A386499 return sorted_result %o A386499 print([k for k, _ in TP_pi_3_upto_sum(sum_limit) ]) %Y A386499 Cf. A112765, A386252, A386498, A386500, A027856, A384530, A080185. %K A386499 nonn %O A386499 1,3 %A A386499 _Ken Clements_, Jul 23 2025