This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386505 #13 Aug 02 2025 06:57:35 %S A386505 1,1,3,43,1717,146261,22851301,5923208845,2370243182889, %T A386505 1386889039102537,1137386506152214441,1263728857603292729441, %U A386505 1850186029852575829090909,3487711314718246830637945549,8300937715895750334611432889933,24529666348754849148034163067487381 %N A386505 a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} (1 + k) * k^2 * binomial(n-1,k) * a(k) * a(n-1-k). %F A386505 E.g.f. A(x) satisfies A(x) = exp( x + x^2 * (d/dx A(x)) + x^3 * (d^2/dx^2 A(x)) ). %t A386505 A386505[0] = 1; %t A386505 A386505[n_] := A386505[n] = If[n==0, %t A386505 1, %t A386505 A386505[n-1]+ Sum[(1+k)*k^2*Binomial[n-1,k]*A386505[k]*A386505[n-1-k] ,{k,0,n-1} ] %t A386505 ] ; %t A386505 Do [ Print[A386505[n]],{n,0,20}] (* _R. J. Mathar_, Aug 02 2025 *) %o A386505 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, (1+j)*j^2*binomial(i-1, j)*v[j+1]*v[i-j])); v; %Y A386505 Cf. A143925, A386506, A386507, A386508, A386509. %Y A386505 Cf. A385939, A386443. %K A386505 nonn %O A386505 0,3 %A A386505 _Seiichi Manyama_, Jul 24 2025