cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386527 Numbers k in A055932 such that both k-1 and k+1 are not squarefree.

This page as a plain text file.
%I A386527 #7 Jul 30 2025 16:17:25
%S A386527 291600,1406250,2097152,13436928,34012224,36382500,46656000,180033840,
%T A386527 393216000,1073741824,1360800000,1771470000,4900921200,8576868300,
%U A386527 12884901888,13588459500,13608154560,17496198720,46490458680,113810780160,125475189840,141557760000,181474110720
%N A386527 Numbers k in A055932 such that both k-1 and k+1 are not squarefree.
%C A386527 Superset of A386526.
%H A386527 Michael De Vlieger, <a href="/A386527/b386527.txt">Table of n, a(n) for n = 1..508</a> (all terms less than A002110(16)).
%H A386527 Michael De Vlieger, <a href="/A386527/a386527.txt">Mathematica algorithm for A055932</a>.
%e A386527 Table of n, a(n), showing exponents of prime factors of a(n), and the prime decomposition of a(n)-1 and a(n)+1 for n = 1..6:
%e A386527                 Exponents
%e A386527 n       a(n)    2.3.5.7.11  a(n)-1                a(n)+1
%e A386527 ----------------------------------------------------------------------
%e A386527 1     291600    4.6.2       7^2 * 11 * 541        17^2 * 1009
%e A386527 2    1406250    1.2.7      13^2 * 53 * 157        7^2 * 11 * 2609
%e A386527 3    2097152   21           7^2 * 127 * 337       3^2 * 43 * 5419
%e A386527 4   13436928   11.8         7^2 * 274223         11^2 * 111049
%e A386527 5   34012224    6.12        7^3 * 17 * 19 * 307   5^2 * 13 * 229 * 457
%e A386527 6   36382500    2.3.4.2.1  17^2 * 31^2 * 131     29^2 * 43261
%t A386527 (* Load the Mathematica algorithm in Links, then: *)
%t A386527 Select[Union@ Flatten[a055932[10]], AllTrue[# + {-1, 1}, Not @* SquareFreeQ] &]
%Y A386527 Cf. A000079, A002110, A013929, A025487, A055932, A384530, A386526.
%K A386527 nonn
%O A386527 1,1
%A A386527 _Michael De Vlieger_, Jul 24 2025