cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386528 Primes which remain primes after the mapping {1 -> 3, 3 -> 5, 5 -> 7, 7 -> 9, 9 -> 1} of its decimal digits.

This page as a plain text file.
%I A386528 #35 Aug 28 2025 18:09:04
%S A386528 2,3,5,19,31,37,41,59,97,131,137,151,157,181,191,199,211,227,239,271,
%T A386528 281,307,349,359,367,409,419,457,461,479,509,541,569,619,631,641,691,
%U A386528 727,797,821,827,829,881,907,919,947,971,977,991,1009,1021,1049,1069,1087,1097,1109,1151
%N A386528 Primes which remain primes after the mapping {1 -> 3, 3 -> 5, 5 -> 7, 7 -> 9, 9 -> 1} of its decimal digits.
%C A386528 Of the 10! possible nontrivial decimal digital mappings, this one was chosen for its inclusion of all the odd numbers and none of the even numbers.
%e A386528 19 is a term since the mapping produces 31, which is prime;
%e A386528 31 is a term since the mapping produces 53, which is prime.
%t A386528 fQ[n_] := PrimeQ[ FromDigits[ IntegerDigits[ n] /. {1 -> 3, 3 -> 5, 5 -> 7, 7 -> 9, 9 -> 1}]]; Select[ Prime@ Range@ 200, fQ]
%o A386528 (Python)
%o A386528 from sympy import isprime
%o A386528 def ok(n): return isprime(n) and isprime(int(str(n).translate(str.maketrans("13579","35791"))))
%o A386528 print([k for k in range(1200) if ok(k)]) # _Michael S. Branicky_, Aug 24 2025
%Y A386528 Cf. A000040, A198047.
%K A386528 base,nonn,new
%O A386528 1,1
%A A386528 Tristan J. Jones and _Robert G. Wilson v_, Aug 21 2025