This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386539 #19 Aug 19 2025 11:30:26 %S A386539 2,4,8,6,14,24,8,20,28,42,10,26,38,56,74,12,32,48,66,82,104,14,38,58, %T A386539 80,100,122,138,16,40,64,88,114,134,164,186,18,46,74,98,132,152,186, %U A386539 212,240,20,52,84,112,150,174,208,232,266,304,22,58,94,126,160,196,226,262,296,324,362 %N A386539 Triangle read by rows: T(n,k) is the maximum possible area of a polygon within a ellipse with integer axis n and k, where n >= k >= 1 and both the center and the vertices lie on points of a unit square grid. %C A386539 The axes of the ellipse are assumed to be aligned with the coordinate axes. %C A386539 Conjecture: The maximum possible area of a polygon within the ellipse would be the same if only the vertices but not the center were fixed on grid points. %C A386539 All terms are even. %H A386539 Felix Huber, <a href="/A386539/b386539.txt">Rows n = 1..141 of triangle, flattened</a> %H A386539 Felix Huber, <a href="/A386539/a386539.pdf">Illustraton of T(5,3) = 38</a> %H A386539 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Ellipse.html">Ellipse</a> %H A386539 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PicksTheorem.html">Pick's Theorem</a> %F A386539 a(A000217(n)) = T(n,n) = A386538(n). %F A386539 a(n) < Pi*n*k. %e A386539 The triangle T(n,k) begins: %e A386539 n\k 1 2 3 4 5 6 7 8 9 10 11 ... %e A386539 1: 2 %e A386539 2: 4 8 %e A386539 3: 6 14 24 %e A386539 4: 8 20 28 42 %e A386539 5: 10 26 38 56 74 %e A386539 6: 12 32 48 66 82 104 %e A386539 7: 14 38 58 80 100 122 138 %e A386539 8: 16 40 64 88 114 134 164 186 %e A386539 9: 18 46 74 98 132 152 186 212 240 %e A386539 10: 20 52 84 112 150 174 208 232 266 304 %e A386539 11: 22 58 94 126 160 196 226 262 296 324 362 %e A386539 ... %e A386539 See linked illustration of the term T(5,3) = 38. %p A386539 T386539:=proc(n,k) %p A386539 local x,y,p,s; %p A386539 p:=2*(n+k); %p A386539 s:={0}; %p A386539 for x to n-1 do %p A386539 y:=floor(k*sqrt(1-x^2/n^2)); %p A386539 p:=p+4*y; %p A386539 s:=s union {y} %p A386539 od; %p A386539 return p-2*nops(s) %p A386539 end proc; %p A386539 seq(seq(T386539(n,k),k=1..n),n=1..25); %t A386539 T[n_, k_] := Module[{p=2*(n+k)},s = {0};Do[ y = Floor[k*Sqrt[1 - x^2/n^2]];p = p + 4*y;s = Union[s, {y}],{x,n-1}];p - 2*Length[s]];Flatten[Table[T[n, k], {n, 1, 11}, {k, 1, n}]] (* _James C. McMahon_, Aug 19 2025 *) %Y A386539 Cf. A000217, A108126, A288247, A386539. %K A386539 nonn,tabl %O A386539 1,1 %A A386539 _Felix Huber_, Aug 05 2025