cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A386538 a(n) is the maximum possible area of a polygon within a circle of radius n, where both the center and the vertices lie on points of a unit square grid.

Original entry on oeis.org

0, 2, 8, 24, 42, 74, 104, 138, 186, 240, 304, 362, 424, 512, 594, 690, 776, 880, 986, 1104, 1232, 1346, 1490, 1624, 1762, 1930, 2088, 2256, 2418, 2594, 2784, 2962, 3170, 3368, 3584, 3810, 4008, 4248, 4466, 4730, 4976, 5210, 5474, 5736, 6024, 6306, 6570, 6864, 7154
Offset: 0

Views

Author

Felix Huber, Aug 05 2025

Keywords

Comments

a(n) > 99% of the circle area for n >= 50.
Conjecture: The maximum possible area of a polygon within the circle would be the same if only the vertices but not the center were fixed on grid points.
All terms are even.

Examples

			See linked illustration of the term a(4) = 42.
		

Crossrefs

Programs

  • Maple
    A386538:=proc(n)
        local x,y,p,s;
        p:=4*n;
        s:={};
        for x to n do
            y:=floor(sqrt(n^2-x^2));
            p:=p+4*y;
            s:=s union {y}
        od;
        return p-2*nops(s)
    end proc;
    seq(A386538(n),n=0..48);
  • Mathematica
    a[n_] := Module[{p=4n},s = {}; Do[ y = Floor[Sqrt[n^2 - x^2]];p = p + 4*y;s = Union[s, {y}],{x,n} ];p - 2*Length[s]];Array[a,49,0] (* James C. McMahon, Aug 19 2025 *)

Formula

a(n) = A386539(A000217(n)) = A386539(n,n) for n >= 1.
a(n) <= A066643(n).
Showing 1-1 of 1 results.