cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386545 Decimal expansion of the surface area of a triaugmented truncated dodecahedron with unit edges.

Original entry on oeis.org

1, 0, 4, 5, 6, 4, 7, 5, 6, 3, 5, 4, 4, 3, 7, 7, 7, 8, 6, 4, 4, 4, 7, 3, 7, 2, 9, 3, 8, 1, 1, 7, 2, 6, 8, 3, 0, 4, 9, 1, 2, 2, 4, 6, 6, 7, 1, 0, 4, 7, 1, 7, 5, 5, 0, 9, 1, 4, 9, 0, 6, 1, 0, 8, 2, 4, 7, 1, 0, 4, 4, 4, 8, 6, 5, 7, 1, 8, 4, 4, 4, 6, 8, 3, 6, 8, 5, 7, 1, 1
Offset: 3

Views

Author

Paolo Xausa, Jul 28 2025

Keywords

Comments

The triaugmented truncated dodecahedron is Johnson solid J_71.

Examples

			104.56475635443777864447372938117268304912246671047...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[(60 + 35*Sqrt[3] + 90*Sqrt[#] + 3*Sqrt[5*#])/4 & [5 + Sqrt[20]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J71", "SurfaceArea"], 10, 100]]

Formula

Equals (60 + 35*sqrt(3) + 90*sqrt(5 + 2*sqrt(5)) + 3*sqrt(5*(5 + 2*sqrt(5))))/4 = (60 + 35*A002194 + 90*sqrt(5 + A010476) + 3*sqrt(5*(5 + A010476)))/4.
Equals the largest root of 256*x^8 - 30720*x^7 - 1574400*x^6 + 238464000*x^5 + 68364000*x^4 - 390828240000*x^3 + 4437895162500*x^2 + 78660973125000*x - 1021409416546875.