A386545 Decimal expansion of the surface area of a triaugmented truncated dodecahedron with unit edges.
1, 0, 4, 5, 6, 4, 7, 5, 6, 3, 5, 4, 4, 3, 7, 7, 7, 8, 6, 4, 4, 4, 7, 3, 7, 2, 9, 3, 8, 1, 1, 7, 2, 6, 8, 3, 0, 4, 9, 1, 2, 2, 4, 6, 6, 7, 1, 0, 4, 7, 1, 7, 5, 5, 0, 9, 1, 4, 9, 0, 6, 1, 0, 8, 2, 4, 7, 1, 0, 4, 4, 4, 8, 6, 5, 7, 1, 8, 4, 4, 4, 6, 8, 3, 6, 8, 5, 7, 1, 1
Offset: 3
Examples
104.56475635443777864447372938117268304912246671047...
Links
- Paolo Xausa, Table of n, a(n) for n = 3..10000
- Wikipedia, Triaugmented truncated dodecahedron.
Programs
-
Mathematica
First[RealDigits[(60 + 35*Sqrt[3] + 90*Sqrt[#] + 3*Sqrt[5*#])/4 & [5 + Sqrt[20]], 10, 100]] (* or *) First[RealDigits[PolyhedronData["J71", "SurfaceArea"], 10, 100]]
Formula
Equals (60 + 35*sqrt(3) + 90*sqrt(5 + 2*sqrt(5)) + 3*sqrt(5*(5 + 2*sqrt(5))))/4 = (60 + 35*A002194 + 90*sqrt(5 + A010476) + 3*sqrt(5*(5 + A010476)))/4.
Equals the largest root of 256*x^8 - 30720*x^7 - 1574400*x^6 + 238464000*x^5 + 68364000*x^4 - 390828240000*x^3 + 4437895162500*x^2 + 78660973125000*x - 1021409416546875.
Comments