This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386552 #28 Aug 06 2025 01:04:01 %S A386552 1,110,110100,1101001000,110100100010000,110100100010000100000, %T A386552 1101001000100001000001000000,110100100010000100000100000010000000, %U A386552 110100100010000100000100000010000000100000000,1101001000100001000001000000100000001000000001000000000 %N A386552 Concatenate powers of 10. %C A386552 Binary version of A045507. Base-2 representation of A164894. %C A386552 Concatenate first A000217(n+1) terms of A010054. %H A386552 Jason Bard, <a href="/A386552/b386552.txt">Table of n, a(n) for n = 0..43</a> %F A386552 a(n) = Sum_{k=1..n+1} 10^A133082(k,n+2). %F A386552 a(n) = A101305(n) + 10^A000096(n). %F A386552 For n >= 1, a(n) = 10^(n+1)*a(n-1)+10^n. %F A386552 Number of digits in a(n) is A000217(n+1). %p A386552 a:= proc(n) option remember; %p A386552 `if`(n<0, 0, parse(cat(a(n-1), 10^n))) %p A386552 end: %p A386552 seq(a(n), n=0..10); # _Alois P. Heinz_, Jul 28 2025 %t A386552 a[0] = 1; a[n_] := a[n - 1]*10^(n+1) + 10^n; Table[a[n], {n, 0, 9}] %o A386552 (Python) %o A386552 def A386552(n): return 10**n*sum(10**(k*((n<<1)-k+1)>>1) for k in range(n+1)) # _Chai Wah Wu_, Aug 05 2025 %Y A386552 Cf. A000096, A000217, A010054, A011557, A045507, A051639, A101305, A133082, A164894, A242646. %K A386552 nonn,base,easy %O A386552 0,2 %A A386552 _Jason Bard_, Jul 25 2025