cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386556 Number of 2-colorings of an 6 X 6 X 6 grid / cube, up to rotational symmetry, by the number of black cells.

This page as a plain text file.
%I A386556 #21 Aug 04 2025 02:31:15
%S A386556 1,11,1013,69045,3677374,155822419,5479820520,164392285865,
%T A386556 4294750355129,99256405950180,2054607644379763,38477196919023712,
%U A386556 657318781413490584,10314848558604181280,149565304110190970723,2014146095209708440612,25302710321203873065217,297678944953786351579885,3291006113657215317985320
%N A386556 Number of 2-colorings of an 6 X 6 X 6 grid / cube, up to rotational symmetry, by the number of black cells.
%C A386556 This sequence is finite, having 6^3+1 terms. The cycle index Z(C) of the permutation group C of the rotations of the cube acting on the cells is given by 1/24 (a[1]^216 + 8 * a[1]^6 * a[3]^70 + 9 * a[2]^108 + 6 * a[4]^54).
%D A386556 F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973, page 35.
%H A386556 Marko Riedel, <a href="/A386556/b386556.txt">Table of n, a(n) for n = 0..216</a>
%F A386556 a(n) = [z^n] Z(C; 1+z).
%Y A386556 Cf. A334616, A386553, A386554, A386555.
%K A386556 nonn,fini,full
%O A386556 0,2
%A A386556 _Marko Riedel_, Jul 25 2025