cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386558 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals: A(n,k) = binomial((k+1)*n+k-1,n)/(n+1).

This page as a plain text file.
%I A386558 #19 Jul 26 2025 09:31:18
%S A386558 1,1,0,1,1,0,1,2,2,0,1,3,7,5,0,1,4,15,30,14,0,1,5,26,91,143,42,0,1,6,
%T A386558 40,204,612,728,132,0,1,7,57,385,1771,4389,3876,429,0,1,8,77,650,4095,
%U A386558 16380,32890,21318,1430,0,1,9,100,1015,8184,46376,158224,254475,120175,4862,0
%N A386558 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals: A(n,k) = binomial((k+1)*n+k-1,n)/(n+1).
%H A386558 Wikipedia, <a href="https://en.wikipedia.org/wiki/Fuss-Catalan_number">Fuss-Catalan number</a>
%F A386558 For k > 0, A(n,k) = r * binomial(n*p+r,n)/(n*p+r), the Fuss-Catalan number with p=k+1 and r=k.
%F A386558 G.f. of column k: (1/x) Series_Reverion( x*(1-x)^k ).
%e A386558 Square array begins:
%e A386558   1,   1,    1,     1,      1,      1,       1, ...
%e A386558   0,   1,    2,     3,      4,      5,       6, ...
%e A386558   0,   2,    7,    15,     26,     40,      57, ...
%e A386558   0,   5,   30,    91,    204,    385,     650, ...
%e A386558   0,  14,  143,   612,   1771,   4095,    8184, ...
%e A386558   0,  42,  728,  4389,  16380,  46376,  109668, ...
%e A386558   0, 132, 3876, 32890, 158224, 548340, 1533939, ...
%o A386558 (PARI) a(n, k) = binomial((k+1)*n+k-1, n)/(n+1);
%Y A386558 Columns k=0..10 give A000007, A000108, A006013, A006632, A118971, A130564(n+1), A130565(n+1), A234466, A234513, A234573, A235340.
%Y A386558 Main diagonal gives A177784(n+1).
%Y A386558 Cf. A162382.
%K A386558 nonn,tabl,easy
%O A386558 0,8
%A A386558 _Seiichi Manyama_, Jul 26 2025