This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386575 #14 Aug 02 2025 21:54:53 %S A386575 1,1,1,1,1,0,1,1,1,0,1,1,1,0,0,1,1,1,1,1,0,0,1,1,1,0,1,1,1,0,1,1,0,0, %T A386575 0,0,1,0,0,1,1,0,1,1,1,0,1,1,1,1,0,1,1,1,0,1,0,0,1,0,1,0,1,1,0,0,1,1, %U A386575 0,0,1,1,1,0,1,1,0,0,1,1,1,0,1,0,0,0,0,1,1,0,0,1,0,0,0,2 %N A386575 Number of distinct separable and pairwise disjoint sets of strict integer partitions, one of each exponent in the prime factorization of n. %C A386575 A set partition is separable iff the underlying set has a permutation whose adjacent elements all belong to different blocks. Note that separability only depends on the sizes of the blocks. %C A386575 Conjecture: a(n) > 0 iff the multiset of prime factors of n has a permutation with all distinct run lengths. %e A386575 The prime indices of 6144 are {1,1,1,1,1,1,1,1,1,1,1,2}, and we have the following a(6144) = 5 choices: {{1},{11}}, {{1},{5,6}}, {{1},{4,7}}, {{1},{3,8}}, {{1},{2,9}}. The other 2 disjoint families {{1},{2,4,5}} and {{1},{2,3,6}} are not separable. %e A386575 The prime indices of 7776 are {1,1,1,1,1,2,2,2,2,2}, with separable disjoint families {{5},{2,3}}, {{5},{1,4}}, {{1,4},{2,3}}, so a(7776) = 3. %e A386575 The prime indices of 15552 are {1,1,1,1,1,1,2,2,2,2,2}, with a(15552) = 5 choices: {{5},{6}}, {{5},{2,4}}, {{6},{2,3}}, {{6},{1,4}}, {{1,5},{2,3}}. The other disjoint family {{5},{1,2,3}} is not separable. %e A386575 The a(n) families for n = 2, 96, 384, 1536, 3456, 20736: %e A386575 {{1}} {{1},{5}} {{1},{7}} {{1},{9}} {{3},{7}} {{4},{8}} %e A386575 {{1},{2,3}} {{1},{2,5}} {{1},{2,7}} {{3},{1,6}} {{4},{1,7}} %e A386575 {{1},{3,4}} {{1},{3,6}} {{3},{2,5}} {{4},{2,6}} %e A386575 {{1},{4,5}} {{7},{1,2}} {{4},{3,5}} %e A386575 {{1,2},{3,4}} {{8},{1,3}} %e A386575 {{1,3},{2,6}} %t A386575 disjointFamilies[y_]:=Union[Sort/@Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&]]; %t A386575 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A386575 seps[ptn_,fir_]:=If[Total[ptn]==1,{{fir}},Join@@Table[Prepend[#,fir]&/@seps[MapAt[#-1&,ptn,fir],nex],{nex,Select[DeleteCases[Range[Length[ptn]],fir],ptn[[#]]>0&]}]]; %t A386575 seps[ptn_]:=If[Total[ptn]==0,{{}},Join@@(seps[ptn,#]&/@Range[Length[ptn]])]; %t A386575 Table[Length[Select[disjointFamilies[prix[n]],seps[Length/@#]!={}&]],{n,100}] %Y A386575 Positions of positive terms are A351294, conjugate A381432. %Y A386575 Positions of 0 are A351295, conjugate A381433. %Y A386575 For inseparable instead of separable we have A386582, see A386632. %Y A386575 This is the separable case of A386587 (ordered version A382525). %Y A386575 A000110 counts set partitions, ordered A000670. %Y A386575 A003242 and A335452 count separations, ranks A333489. %Y A386575 A025065(n - 2) counts partitions of inseparable type, ranks A335126, sums of A386586. %Y A386575 A239455 counts Look-and-Say partitions, complement A351293. %Y A386575 A279790 counts disjoint families on strongly normal multisets. %Y A386575 A325534 counts separable multisets, ranks A335433, sums of A386583. %Y A386575 A325535 counts inseparable multisets, ranks A335448, sums of A386584. %Y A386575 A336106 counts partitions of separable type, ranks A335127, sums of A386585. %Y A386575 A386633 counts separable set partitions, row sums of A386635. %Y A386575 A386634 counts inseparable set partitions, row sums of A386636. %Y A386575 Cf. A001221, A001222, A008480, A051903, A051904, A056239, A130091, A373957, A386580, A386581. %K A386575 nonn %O A386575 1,96 %A A386575 _Gus Wiseman_, Jul 30 2025