cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386575 Number of distinct separable and pairwise disjoint sets of strict integer partitions, one of each exponent in the prime factorization of n.

This page as a plain text file.
%I A386575 #14 Aug 02 2025 21:54:53
%S A386575 1,1,1,1,1,0,1,1,1,0,1,1,1,0,0,1,1,1,1,1,0,0,1,1,1,0,1,1,1,0,1,1,0,0,
%T A386575 0,0,1,0,0,1,1,0,1,1,1,0,1,1,1,1,0,1,1,1,0,1,0,0,1,0,1,0,1,1,0,0,1,1,
%U A386575 0,0,1,1,1,0,1,1,0,0,1,1,1,0,1,0,0,0,0,1,1,0,0,1,0,0,0,2
%N A386575 Number of distinct separable and pairwise disjoint sets of strict integer partitions, one of each exponent in the prime factorization of n.
%C A386575 A set partition is separable iff the underlying set has a permutation whose adjacent elements all belong to different blocks. Note that separability only depends on the sizes of the blocks.
%C A386575 Conjecture: a(n) > 0 iff the multiset of prime factors of n has a permutation with all distinct run lengths.
%e A386575 The prime indices of 6144 are {1,1,1,1,1,1,1,1,1,1,1,2}, and we have the following a(6144) = 5 choices: {{1},{11}}, {{1},{5,6}}, {{1},{4,7}}, {{1},{3,8}}, {{1},{2,9}}. The other 2 disjoint families {{1},{2,4,5}} and {{1},{2,3,6}} are not separable.
%e A386575 The prime indices of 7776 are {1,1,1,1,1,2,2,2,2,2}, with separable disjoint families {{5},{2,3}}, {{5},{1,4}}, {{1,4},{2,3}}, so a(7776) = 3.
%e A386575 The prime indices of 15552 are {1,1,1,1,1,1,2,2,2,2,2}, with a(15552) = 5 choices: {{5},{6}}, {{5},{2,4}}, {{6},{2,3}}, {{6},{1,4}}, {{1,5},{2,3}}. The other disjoint family {{5},{1,2,3}} is not separable.
%e A386575 The a(n) families for n = 2, 96, 384, 1536, 3456, 20736:
%e A386575   {{1}}  {{1},{5}}    {{1},{7}}    {{1},{9}}    {{3},{7}}      {{4},{8}}
%e A386575          {{1},{2,3}}  {{1},{2,5}}  {{1},{2,7}}  {{3},{1,6}}    {{4},{1,7}}
%e A386575                       {{1},{3,4}}  {{1},{3,6}}  {{3},{2,5}}    {{4},{2,6}}
%e A386575                                    {{1},{4,5}}  {{7},{1,2}}    {{4},{3,5}}
%e A386575                                                 {{1,2},{3,4}}  {{8},{1,3}}
%e A386575                                                                {{1,3},{2,6}}
%t A386575 disjointFamilies[y_]:=Union[Sort/@Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&]];
%t A386575 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A386575 seps[ptn_,fir_]:=If[Total[ptn]==1,{{fir}},Join@@Table[Prepend[#,fir]&/@seps[MapAt[#-1&,ptn,fir],nex],{nex,Select[DeleteCases[Range[Length[ptn]],fir],ptn[[#]]>0&]}]];
%t A386575 seps[ptn_]:=If[Total[ptn]==0,{{}},Join@@(seps[ptn,#]&/@Range[Length[ptn]])];
%t A386575 Table[Length[Select[disjointFamilies[prix[n]],seps[Length/@#]!={}&]],{n,100}]
%Y A386575 Positions of positive terms are A351294, conjugate A381432.
%Y A386575 Positions of 0 are A351295, conjugate A381433.
%Y A386575 For inseparable instead of separable we have A386582, see A386632.
%Y A386575 This is the separable case of A386587 (ordered version A382525).
%Y A386575 A000110 counts set partitions, ordered A000670.
%Y A386575 A003242 and A335452 count separations, ranks A333489.
%Y A386575 A025065(n - 2) counts partitions of inseparable type, ranks A335126, sums of A386586.
%Y A386575 A239455 counts Look-and-Say partitions, complement A351293.
%Y A386575 A279790 counts disjoint families on strongly normal multisets.
%Y A386575 A325534 counts separable multisets, ranks A335433, sums of A386583.
%Y A386575 A325535 counts inseparable multisets, ranks A335448, sums of A386584.
%Y A386575 A336106 counts partitions of separable type, ranks A335127, sums of A386585.
%Y A386575 A386633 counts separable set partitions, row sums of A386635.
%Y A386575 A386634 counts inseparable set partitions, row sums of A386636.
%Y A386575 Cf. A001221, A001222, A008480, A051903, A051904, A056239, A130091, A373957, A386580, A386581.
%K A386575 nonn
%O A386575 1,96
%A A386575 _Gus Wiseman_, Jul 30 2025