This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386576 #8 Aug 05 2025 21:33:32 %S A386576 1,1,0,1,0,1,10,4,14,84,1136,967,3342,12823,101762,1769580 %N A386576 Number of anti-runs of length n covering an initial interval of positive integers with strictly decreasing multiplicities. %C A386576 An anti-run is a sequence with no adjacent equal terms. %e A386576 The a(7) = 4 anti-runs are: %e A386576 (1,2,1,2,1,2,1) %e A386576 (1,2,1,2,1,3,1) %e A386576 (1,2,1,3,1,2,1) %e A386576 (1,3,1,2,1,2,1) %t A386576 seps[ptn_,fir_]:=If[Total[ptn]==1,{{fir}},Join@@Table[Prepend[#,fir]&/@seps[MapAt[#-1&,ptn,fir],nex],{nex,Select[DeleteCases[Range[Length[ptn]],fir],ptn[[#]]>0&]}]]; %t A386576 seps[ptn_]:=If[Total[ptn]==0,{{}},Join@@(seps[ptn,#]&/@Range[Length[ptn]])]; %t A386576 Table[Sum[Length[seps[y]],{y,Select[IntegerPartitions[n],UnsameQ@@#&]}],{n,0,10}] %Y A386576 For any multiplicities we have A005649. %Y A386576 For weakly instead of strictly decreasing multiplicities we have A321688. %Y A386576 A003242 and A335452 count anti-runs, ranks A333489. %Y A386576 A005651 counts ordered set partitions with weakly decreasing sizes, strict A007837. %Y A386576 A032020 counts strict anti-run compositions. %Y A386576 A325534 counts separable multisets, ranks A335433. %Y A386576 A325535 counts inseparable multisets, ranks A335448. %Y A386576 A336103 counts normal separable multisets, inseparable A336102. %Y A386576 A386583 counts separable partitions by length, inseparable A386584. %Y A386576 A386585 counts partitions of separable type by length, sums A336106, ranks A335127. %Y A386576 A386586 counts partitions of inseparable type by length, sums A025065, ranks A335126. %Y A386576 A386633 counts separable set partitions, row sums of A386635. %Y A386576 A386634 counts inseparable set partitions, row sums of A386636. %Y A386576 Cf. A000670, A019472, A106351, A238130, A335125, A335516, A386580, A386581. %K A386576 nonn,more %O A386576 0,7 %A A386576 _Gus Wiseman_, Aug 03 2025