This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386577 #9 Aug 03 2025 00:05:26 %S A386577 1,1,0,1,1,2,0,1,0,0,1,0,1,2,0,1,1,2,0,1,2,0,2,0,0,0,0,1,1,1,2,0,1,1, %T A386577 2,0,2,0,2,0,1,0,2,2,0,0,1,2,0,0,0,1,1,2,0,1,6,0,0,1,0,0,0,0,1,2,0,2, %U A386577 0,2,0,2,2,2,0,1,2,0,2,0,0,2,2,0,1 %N A386577 Irregular triangle read by rows where T(n,k) is the number of permutations of the multiset of prime factors of n with k adjacent equal terms. %C A386577 Are the rows all unimodal? %C A386577 Counts permutations of prime factors by "inseparability". For "separability" we have A374252. %e A386577 The prime indices of 12 are {1,1,2}, and we have: %e A386577 - 1 permutation (1,2,1) with 0 adjacent equal parts %e A386577 - 2 permutations (1,1,2), (2,1,1) with 1 adjacent equal part %e A386577 - 0 permutations with 2 adjacent equal parts %e A386577 so row 12 is (1,2,0). %e A386577 Row 48 counts the following permutations: %e A386577 . . (1,1,1,2,1) (1,1,1,1,2) . %e A386577 (1,1,2,1,1) (2,1,1,1,1) %e A386577 (1,2,1,1,1) %e A386577 Row 144 counts the following permutations: %e A386577 . (1,1,2,1,2,1) (1,1,1,2,1,2) (1,1,1,2,2,1) (1,1,1,1,2,2) . %e A386577 (1,2,1,1,2,1) (1,1,2,1,1,2) (1,1,2,2,1,1) (2,2,1,1,1,1) %e A386577 (1,2,1,2,1,1) (1,2,1,1,1,2) (1,2,2,1,1,1) %e A386577 (2,1,1,1,2,1) (2,1,1,1,1,2) %e A386577 (2,1,1,2,1,1) %e A386577 (2,1,2,1,1,1) %e A386577 Triangle begins: %e A386577 1: %e A386577 2: 1 %e A386577 3: 1 %e A386577 4: 0 1 %e A386577 6: 1 %e A386577 6: 2 0 %e A386577 7: 1 %e A386577 8: 0 0 1 %e A386577 9: 0 1 %e A386577 10: 2 0 %e A386577 11: 1 %e A386577 12: 1 2 0 %e A386577 13: 1 %e A386577 14: 2 0 %e A386577 15: 2 0 %e A386577 16: 0 0 0 1 %e A386577 17: 1 %e A386577 18: 1 2 0 %e A386577 19: 1 %e A386577 20: 1 2 0 %e A386577 21: 2 0 %e A386577 22: 2 0 %e A386577 23: 1 %e A386577 24: 0 2 2 0 %t A386577 Table[Length[Select[Permutations[Flatten[ConstantArray@@@FactorInteger[n]]],Function[q,Length[Select[Range[Length[q]-1],q[[#]]==q[[#+1]]&]]==k]]],{n,30},{k,0,PrimeOmega[n]-1}] %Y A386577 Row lengths are A001222. %Y A386577 The minima of each row are A010051. %Y A386577 Sorted positions of first appearances appear to be A025487. %Y A386577 Column k = last is A069513. %Y A386577 Row sums are A168324 or A008480. %Y A386577 The number of trailing zeros in each row is A297155 = A001221-1. %Y A386577 Column k = 1 is A335452. %Y A386577 The number of leading zeros in each row is A374246. %Y A386577 For separability instead of inseparability we have A374252. %Y A386577 For a multiset with prescribed multiplicities we have A386578, separability A386579. %Y A386577 A003242 and A335452 count anti-runs, ranks A333489, patterns A005649. %Y A386577 A025065(n - 2) counts partitions of inseparable type, ranks A335126, sums of A386586. %Y A386577 A124762 gives inseparability of standard compositions, separability A333382. %Y A386577 A325534 counts separable multisets, ranks A335433, sums of A386583. %Y A386577 A325535 counts inseparable multisets, ranks A335448, sums of A386584. %Y A386577 A336106 counts partitions of separable type, ranks A335127, sums of A386585. %Y A386577 Cf. A001221, A051903, A051904, A106351, A238130, A336102, A373957, A382525, A386581, A386632. %K A386577 nonn,tabf %O A386577 1,6 %A A386577 _Gus Wiseman_, Aug 01 2025