cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386577 Irregular triangle read by rows where T(n,k) is the number of permutations of the multiset of prime factors of n with k adjacent equal terms.

This page as a plain text file.
%I A386577 #9 Aug 03 2025 00:05:26
%S A386577 1,1,0,1,1,2,0,1,0,0,1,0,1,2,0,1,1,2,0,1,2,0,2,0,0,0,0,1,1,1,2,0,1,1,
%T A386577 2,0,2,0,2,0,1,0,2,2,0,0,1,2,0,0,0,1,1,2,0,1,6,0,0,1,0,0,0,0,1,2,0,2,
%U A386577 0,2,0,2,2,2,0,1,2,0,2,0,0,2,2,0,1
%N A386577 Irregular triangle read by rows where T(n,k) is the number of permutations of the multiset of prime factors of n with k adjacent equal terms.
%C A386577 Are the rows all unimodal?
%C A386577 Counts permutations of prime factors by "inseparability". For "separability" we have A374252.
%e A386577 The prime indices of 12 are {1,1,2}, and we have:
%e A386577 - 1 permutation (1,2,1) with 0 adjacent equal parts
%e A386577 - 2 permutations (1,1,2), (2,1,1) with 1 adjacent equal part
%e A386577 - 0 permutations with 2 adjacent equal parts
%e A386577 so row 12 is (1,2,0).
%e A386577 Row 48 counts the following permutations:
%e A386577   .  .  (1,1,1,2,1)  (1,1,1,1,2)  .
%e A386577         (1,1,2,1,1)  (2,1,1,1,1)
%e A386577         (1,2,1,1,1)
%e A386577 Row 144 counts the following permutations:
%e A386577   .  (1,1,2,1,2,1)  (1,1,1,2,1,2)  (1,1,1,2,2,1)  (1,1,1,1,2,2)  .
%e A386577      (1,2,1,1,2,1)  (1,1,2,1,1,2)  (1,1,2,2,1,1)  (2,2,1,1,1,1)
%e A386577      (1,2,1,2,1,1)  (1,2,1,1,1,2)  (1,2,2,1,1,1)
%e A386577                     (2,1,1,1,2,1)  (2,1,1,1,1,2)
%e A386577                     (2,1,1,2,1,1)
%e A386577                     (2,1,2,1,1,1)
%e A386577 Triangle begins:
%e A386577    1:
%e A386577    2: 1
%e A386577    3: 1
%e A386577    4: 0  1
%e A386577    6: 1
%e A386577    6: 2  0
%e A386577    7: 1
%e A386577    8: 0  0  1
%e A386577    9: 0  1
%e A386577   10: 2  0
%e A386577   11: 1
%e A386577   12: 1  2  0
%e A386577   13: 1
%e A386577   14: 2  0
%e A386577   15: 2  0
%e A386577   16: 0  0  0  1
%e A386577   17: 1
%e A386577   18: 1  2  0
%e A386577   19: 1
%e A386577   20: 1  2  0
%e A386577   21: 2  0
%e A386577   22: 2  0
%e A386577   23: 1
%e A386577   24: 0  2  2  0
%t A386577 Table[Length[Select[Permutations[Flatten[ConstantArray@@@FactorInteger[n]]],Function[q,Length[Select[Range[Length[q]-1],q[[#]]==q[[#+1]]&]]==k]]],{n,30},{k,0,PrimeOmega[n]-1}]
%Y A386577 Row lengths are A001222.
%Y A386577 The minima of each row are A010051.
%Y A386577 Sorted positions of first appearances appear to be A025487.
%Y A386577 Column k = last is A069513.
%Y A386577 Row sums are A168324 or A008480.
%Y A386577 The number of trailing zeros in each row is A297155 = A001221-1.
%Y A386577 Column k = 1 is A335452.
%Y A386577 The number of leading zeros in each row is A374246.
%Y A386577 For separability instead of inseparability we have A374252.
%Y A386577 For a multiset with prescribed multiplicities we have A386578, separability A386579.
%Y A386577 A003242 and A335452 count anti-runs, ranks A333489, patterns A005649.
%Y A386577 A025065(n - 2) counts partitions of inseparable type, ranks A335126, sums of A386586.
%Y A386577 A124762 gives inseparability of standard compositions, separability A333382.
%Y A386577 A325534 counts separable multisets, ranks A335433, sums of A386583.
%Y A386577 A325535 counts inseparable multisets, ranks A335448, sums of A386584.
%Y A386577 A336106 counts partitions of separable type, ranks A335127, sums of A386585.
%Y A386577 Cf. A001221, A051903, A051904, A106351, A238130, A336102, A373957, A382525, A386581, A386632.
%K A386577 nonn,tabf
%O A386577 1,6
%A A386577 _Gus Wiseman_, Aug 01 2025