cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386578 Irregular triangle read by rows where T(n,k) is the number of permutations of row n of A305936 (a multiset whose multiplicities are the prime indices of n) with k adjacent equal parts.

This page as a plain text file.
%I A386578 #6 Aug 04 2025 18:41:57
%S A386578 1,0,1,2,0,0,0,1,1,2,0,0,0,0,1,6,0,0,2,2,2,0,0,2,2,0,0,0,0,0,1,6,6,0,
%T A386578 0,0,0,0,0,0,1,0,0,3,2,0,1,4,3,2,0,24,0,0,0,0,0,0,0,0,0,1,12,12,6,0,0,
%U A386578 0,0,0,0,0,0,0,1,2,12,6,0,0,0,3,6,4,2,0
%N A386578 Irregular triangle read by rows where T(n,k) is the number of permutations of row n of A305936 (a multiset whose multiplicities are the prime indices of n) with k adjacent equal parts.
%C A386578 Row 1 is empty, so offset is 2.
%C A386578 Same as A386579 with rows reversed.
%C A386578 This multiset (row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
%e A386578 Row n = 21 counts the following permutations:
%e A386578   .  112121  111212  111221  111122  .
%e A386578      121121  112112  112211  221111
%e A386578      121211  121112  122111
%e A386578              211121  211112
%e A386578              211211
%e A386578              212111
%e A386578 Triangle begins
%e A386578    .
%e A386578    1
%e A386578    0  1
%e A386578    2  0
%e A386578    0  0  1
%e A386578    1  2  0
%e A386578    0  0  0  1
%e A386578    6  0  0
%e A386578    2  2  2  0
%e A386578    0  2  2  0
%e A386578    0  0  0  0  1
%e A386578    6  6  0  0
%e A386578    0  0  0  0  0  1
%e A386578    0  0  3  2  0
%e A386578    1  4  3  2  0
%e A386578   24  0  0  0
%e A386578    0  0  0  0  0  0  1
%e A386578   12 12  6  0  0
%e A386578    0  0  0  0  0  0  0  1
%e A386578    2 12  6  0  0
%e A386578    0  3  6  4  2  0
%t A386578 nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
%t A386578 aqt[c_,x_]:=Select[Permutations[c],Function[q,Length[Select[Range[Length[q]-1],q[[#]]==q[[#+1]]&]]==x]];
%t A386578 Table[Table[Length[aqt[nrmptn[n],k]],{k,0,Length[nrmptn[n]]-1}],{n,30}]
%Y A386578 Column k = last is A010051.
%Y A386578 Row lengths are A056239.
%Y A386578 Initial zeros are counted by A252736 = A001222 - 1.
%Y A386578 Row sums are A318762.
%Y A386578 Column k = 0 is A335125.
%Y A386578 For prime indices we have A386577.
%Y A386578 Reversing all rows gives A386579.
%Y A386578 A003242 and A335452 count anti-runs, ranks A333489, patterns A005649.
%Y A386578 A025065(n - 2) counts partitions of inseparable type, ranks A335126, sums of A386586.
%Y A386578 A124762 gives inseparability of standard compositions, separability A333382.
%Y A386578 A305936 is a multiset whose multiplicities are the prime indices of n.
%Y A386578 A325534 counts separable multisets, ranks A335433, sums of A386583.
%Y A386578 A325535 counts inseparable multisets, ranks A335448, sums of A386584.
%Y A386578 A336106 counts partitions of separable type, ranks A335127, sums of A386585.
%Y A386578 Cf. A001221, A003963, A051903, A051904, A106351, A112798, A238130, A336102, A373957, A374246, A382525, A386581.
%K A386578 nonn,tabf
%O A386578 2,4
%A A386578 _Gus Wiseman_, Aug 04 2025