This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386578 #6 Aug 04 2025 18:41:57 %S A386578 1,0,1,2,0,0,0,1,1,2,0,0,0,0,1,6,0,0,2,2,2,0,0,2,2,0,0,0,0,0,1,6,6,0, %T A386578 0,0,0,0,0,0,1,0,0,3,2,0,1,4,3,2,0,24,0,0,0,0,0,0,0,0,0,1,12,12,6,0,0, %U A386578 0,0,0,0,0,0,0,1,2,12,6,0,0,0,3,6,4,2,0 %N A386578 Irregular triangle read by rows where T(n,k) is the number of permutations of row n of A305936 (a multiset whose multiplicities are the prime indices of n) with k adjacent equal parts. %C A386578 Row 1 is empty, so offset is 2. %C A386578 Same as A386579 with rows reversed. %C A386578 This multiset (row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}. %e A386578 Row n = 21 counts the following permutations: %e A386578 . 112121 111212 111221 111122 . %e A386578 121121 112112 112211 221111 %e A386578 121211 121112 122111 %e A386578 211121 211112 %e A386578 211211 %e A386578 212111 %e A386578 Triangle begins %e A386578 . %e A386578 1 %e A386578 0 1 %e A386578 2 0 %e A386578 0 0 1 %e A386578 1 2 0 %e A386578 0 0 0 1 %e A386578 6 0 0 %e A386578 2 2 2 0 %e A386578 0 2 2 0 %e A386578 0 0 0 0 1 %e A386578 6 6 0 0 %e A386578 0 0 0 0 0 1 %e A386578 0 0 3 2 0 %e A386578 1 4 3 2 0 %e A386578 24 0 0 0 %e A386578 0 0 0 0 0 0 1 %e A386578 12 12 6 0 0 %e A386578 0 0 0 0 0 0 0 1 %e A386578 2 12 6 0 0 %e A386578 0 3 6 4 2 0 %t A386578 nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A386578 aqt[c_,x_]:=Select[Permutations[c],Function[q,Length[Select[Range[Length[q]-1],q[[#]]==q[[#+1]]&]]==x]]; %t A386578 Table[Table[Length[aqt[nrmptn[n],k]],{k,0,Length[nrmptn[n]]-1}],{n,30}] %Y A386578 Column k = last is A010051. %Y A386578 Row lengths are A056239. %Y A386578 Initial zeros are counted by A252736 = A001222 - 1. %Y A386578 Row sums are A318762. %Y A386578 Column k = 0 is A335125. %Y A386578 For prime indices we have A386577. %Y A386578 Reversing all rows gives A386579. %Y A386578 A003242 and A335452 count anti-runs, ranks A333489, patterns A005649. %Y A386578 A025065(n - 2) counts partitions of inseparable type, ranks A335126, sums of A386586. %Y A386578 A124762 gives inseparability of standard compositions, separability A333382. %Y A386578 A305936 is a multiset whose multiplicities are the prime indices of n. %Y A386578 A325534 counts separable multisets, ranks A335433, sums of A386583. %Y A386578 A325535 counts inseparable multisets, ranks A335448, sums of A386584. %Y A386578 A336106 counts partitions of separable type, ranks A335127, sums of A386585. %Y A386578 Cf. A001221, A003963, A051903, A051904, A106351, A112798, A238130, A336102, A373957, A374246, A382525, A386581. %K A386578 nonn,tabf %O A386578 2,4 %A A386578 _Gus Wiseman_, Aug 04 2025