This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386579 #5 Aug 05 2025 21:33:19 %S A386579 1,1,0,0,2,1,0,0,0,2,1,1,0,0,0,0,0,6,0,2,2,2,0,2,2,0,1,0,0,0,0,0,0,6, %T A386579 6,1,0,0,0,0,0,0,2,3,0,0,0,2,3,4,1,0,0,0,24,1,0,0,0,0,0,0,0,0,6,12,12, %U A386579 1,0,0,0,0,0,0,0,0,0,6,12,2,0,2,4,6,3,0 %N A386579 Number of permutations of row n of A305936 (a multiset whose multiplicities are the prime indices of n) with k adjacent unequal parts. %C A386579 Row 1 is empty, so offset is 2. %C A386579 Same as A386578 with rows reversed. %C A386579 This multiset (row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}. %e A386579 Row n = 21 counts the following permutations: %e A386579 . 111122 111221 111212 112121 . %e A386579 221111 112211 112112 121121 %e A386579 122111 121112 121211 %e A386579 211112 211121 %e A386579 211211 %e A386579 212111 %e A386579 Triangle begins: %e A386579 . %e A386579 1 %e A386579 1 0 %e A386579 0 2 %e A386579 1 0 0 %e A386579 0 2 1 %e A386579 1 0 0 0 %e A386579 0 0 6 %e A386579 0 2 2 2 %e A386579 0 2 2 0 %e A386579 1 0 0 0 0 %e A386579 0 0 6 6 %e A386579 1 0 0 0 0 0 %e A386579 0 2 3 0 0 %e A386579 0 2 3 4 1 %e A386579 0 0 0 24 %e A386579 1 0 0 0 0 0 0 %e A386579 0 0 6 12 12 %e A386579 1 0 0 0 0 0 0 0 %e A386579 0 0 6 12 2 %e A386579 0 2 4 6 3 0 %t A386579 nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A386579 ugt[c_,x_]:=Select[Permutations[c],Function[q,Length[Select[Range[Length[q]-1],q[[#]]!=q[[#+1]]&]]==x]]; %t A386579 Table[Table[Length[ugt[nrmptn[n],k]],{k,0,Length[nrmptn[n]]-1}],{n,30}] %Y A386579 Column k = 0 is A010051. %Y A386579 Row lengths are A056239. %Y A386579 Row sums are A318762. %Y A386579 Column k = last is A335125. %Y A386579 For prime indices we have A374252, reverse A386577. %Y A386579 Reversing all rows gives A386578. %Y A386579 A003242 and A335452 count anti-runs, ranks A333489, patterns A005649. %Y A386579 A025065(n - 2) counts partitions of inseparable type, ranks A335126, sums of A386586. %Y A386579 A124762 gives inseparability of standard compositions, separability A333382. %Y A386579 A305936 is a multiset whose multiplicities are the prime indices of n. %Y A386579 A325534 counts separable multisets, ranks A335433, sums of A386583. %Y A386579 A325535 counts inseparable multisets, ranks A335448, sums of A386584. %Y A386579 A336106 counts partitions of separable type, ranks A335127, sums of A386585. %Y A386579 Cf. A001221, A001222, A003963, A051903, A051904, A106351, A112798, A238130, A336102, A373957, A386581. %K A386579 nonn,tabf %O A386579 2,5 %A A386579 _Gus Wiseman_, Aug 04 2025