A386580 Number of normal multisets of size n having a permutation with all distinct run lengths.
1, 1, 1, 3, 3, 5, 12, 13, 20, 27, 64, 71, 108, 145, 206, 412
Offset: 0
Examples
The normal multiset m = {1,1,1,2,2,2} has permutation (1,2,2,2,1,1) with run lengths (1,3,2), so m is counted under a(6). The a(n) multisets for n = 1..7: (1) (11) (111) (1111) (11111) (111111) (1111111) (112) (1112) (11112) (111112) (1111112) (122) (1222) (11122) (111122) (1111122) (11222) (111222) (1111222) (12222) (111223) (1111223) (111233) (1111233) (112222) (1112222) (112223) (1122222) (112333) (1122223) (122222) (1123333) (122233) (1222222) (122333) (1222233) (1223333)
Crossrefs
For weakly decreasing multiplicities we appear to have A383708.
Programs
-
Mathematica
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; nodrm[y_]:=Select[Permutations[y],UnsameQ@@Length/@Split[#]&]; Table[Length[Select[allnorm[n],nodrm[#]!={}&]],{n,0,5}]
Comments