This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386581 #8 Aug 13 2025 10:20:25 %S A386581 0,0,1,1,5,11,20,51,108,229,448,953,1940,3951,7986,15972 %N A386581 Number of normal multisets of size n with no permutation having all distinct run lengths. %C A386581 A multiset is normal iff it covers an initial interval of positive integers. %e A386581 The normal multiset m = {1,1,1,2,2,2} has permutation (1,2,2,2,1,1) with run lengths (1,3,2), so m is not counted under a(6). %e A386581 The a(1) = 0 through a(6) = 20 multisets: %e A386581 . (12) (123) (1122) (11123) (111123) %e A386581 (1123) (11223) (111234) %e A386581 (1223) (11233) (112233) %e A386581 (1233) (11234) (112234) %e A386581 (1234) (12223) (112334) %e A386581 (12233) (112344) %e A386581 (12234) (112345) %e A386581 (12333) (122223) %e A386581 (12334) (122234) %e A386581 (12344) (122334) %e A386581 (12345) (122344) %e A386581 (122345) %e A386581 (123333) %e A386581 (123334) %e A386581 (123344) %e A386581 (123345) %e A386581 (123444) %e A386581 (123445) %e A386581 (123455) %e A386581 (123456) %t A386581 allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; %t A386581 nodrm[y_]:=Select[Permutations[y],UnsameQ@@Length/@Split[#]&]; %t A386581 Table[Length[Select[allnorm[n],nodrm[#]=={}&]],{n,0,7}] %Y A386581 The complement for partitions appears to be A239455, ranks A351294 or A381432. %Y A386581 For integer partitions we appear to have A351293, ranks A351295 or A381433. %Y A386581 For weakly decreasing multiplicities we appear to have A383710, ranks A382912. %Y A386581 The complement is counted by A386580, see A383708. %Y A386581 A032020 counts normal multisets with distinct multiplicities. %Y A386581 A048767 is the Look-and-Say transform, fixed points A048768 (counted by A217605). %Y A386581 A098859 counts partitions with distinct multiplicities, compositions A242882. %Y A386581 Cf. A000009, A025065, A047966, A072233, A116540, A130091, A320347, A326083, A382771, A382913, A383706. %K A386581 nonn,more %O A386581 0,5 %A A386581 _Gus Wiseman_, Aug 12 2025