cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386582 Number of distinct inseparable and pairwise disjoint sets of strict integer partitions, one of each exponent in the prime factorization of n.

This page as a plain text file.
%I A386582 #7 Aug 02 2025 21:54:45
%S A386582 0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2,0,0,
%T A386582 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,
%U A386582 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0
%N A386582 Number of distinct inseparable and pairwise disjoint sets of strict integer partitions, one of each exponent in the prime factorization of n.
%C A386582 A set partition is inseparable iff the underlying set has no permutation whose adjacent elements all belong to different blocks. Note that inseparability only depends on the sizes of the blocks.
%F A386582 a(2^n) = A111133(n).
%e A386582 The prime indices of 9216 are {1,1,1,1,1,1,1,1,1,1,2,2}, with a(9216) = 2 choices: {{2},{1,4,5}} and {{2},{1,3,6}}. The other 4 disjoint families {{2},{10}}, {{2},{4,6}}, {{2},{3,7}}, {{2},{1,9}} are separable.
%e A386582 The prime indices of 15552 are {1,1,1,1,1,1,2,2,2,2,2}, with a(15552) = 1 choice: {{5},{1,2,3}}. The other 5 disjoint families {{5},{6}}, {{5},{2,4}}, {{6},{2,3}}, {{6},{1,4}}, {{1,5},{2,3}} are separable.
%t A386582 disjointFamilies[y_]:=Union[Sort/@Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&]];
%t A386582 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A386582 seps[ptn_,fir_]:=If[Total[ptn]==1,{{fir}},Join@@Table[Prepend[#,fir]&/@seps[MapAt[#-1&,ptn,fir],nex],{nex,Select[DeleteCases[Range[Length[ptn]],fir],ptn[[#]]>0&]}]];
%t A386582 seps[ptn_]:=If[Total[ptn]==0,{{}},Join@@(seps[ptn,#]&/@Range[Length[ptn]])];
%t A386582 Table[Length[Select[disjointFamilies[prix[n]],seps[Length/@#]=={}&]],{n,100}]
%Y A386582 For separable instead of inseparable we have A386575.
%Y A386582 This is the inseparable case of A386587 (ordered version A382525).
%Y A386582 Positions of positive terms are A386632.
%Y A386582 Positions of first appearances are A386637.
%Y A386582 A000110 counts set partitions, ordered A000670.
%Y A386582 A003242 and A335452 count separations, ranks A333489.
%Y A386582 A025065(n - 2) counts partitions of inseparable type, ranks A335126, sums of A386586.
%Y A386582 A239455 counts Look-and-Say partitions (ranks A351294), complement A351293 (ranks A351295).
%Y A386582 A279790 counts disjoint families on strongly normal multisets.
%Y A386582 A325534 counts separable multisets, ranks A335433, sums of A386583.
%Y A386582 A325535 counts inseparable multisets, ranks A335448, sums of A386584.
%Y A386582 A336106 counts partitions of separable type, ranks A335127, sums of A386585.
%Y A386582 A386633 counts separable set partitions, row sums of A386635.
%Y A386582 A386634 counts inseparable set partitions, row sums of A386636.
%Y A386582 Cf. A001221, A001222, A008480, A051903, A051904, A056239, A111133, A130091, A373957, A386580, A386581.
%K A386582 nonn
%O A386582 1,32
%A A386582 _Gus Wiseman_, Jul 31 2025