This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386583 #23 Aug 05 2025 21:34:06 %S A386583 1,0,1,0,1,0,0,1,1,0,0,1,1,1,0,0,1,2,2,0,0,0,1,2,2,1,0,0,0,1,3,4,1,1, %T A386583 0,0,0,1,3,5,3,2,0,0,0,0,1,4,6,4,3,1,0,0,0,0,1,4,8,6,5,1,1,0,0,0,0,1, %U A386583 5,10,8,8,3,2,0,0,0,0,0,1,5,11,12,11,5,3,1,0,0,0,0 %N A386583 Triangle read by rows where T(n,k) is the number of length k integer partitions of n having a permutation without any adjacent equal parts (separable). %C A386583 A multiset is separable iff it has a permutation that is an anti-run, meaning there are no adjacent equal parts. %C A386583 Separable partitions (A325534) are different from partitions of separable type (A386585). %C A386583 Are the rows all unimodal? %C A386583 Some rows are not unimodal: T(200, k=26..30) = 149371873744, 153304102463, 152360653274, 152412869411, 147228477998. - _Alois P. Heinz_, Aug 04 2025 %H A386583 Alois P. Heinz, <a href="/A386583/b386583.txt">Rows n = 0..200, flattened</a> %e A386583 Row n = 9 counts the following partitions: %e A386583 (9) (5,4) (4,3,2) (3,3,2,1) (3,2,2,1,1) (2,2,2,1,1,1) %e A386583 (6,3) (4,4,1) (4,2,2,1) (3,3,1,1,1) %e A386583 (7,2) (5,2,2) (4,3,1,1) (4,2,1,1,1) %e A386583 (8,1) (5,3,1) (5,2,1,1) %e A386583 (6,2,1) %e A386583 (7,1,1) %e A386583 Triangle begins: %e A386583 1 %e A386583 0 1 %e A386583 0 1 0 %e A386583 0 1 1 0 %e A386583 0 1 1 1 0 %e A386583 0 1 2 2 0 0 %e A386583 0 1 2 2 1 0 0 %e A386583 0 1 3 4 1 1 0 0 %e A386583 0 1 3 5 3 2 0 0 0 %e A386583 0 1 4 6 4 3 1 0 0 0 %e A386583 0 1 4 8 6 5 1 1 0 0 0 %e A386583 0 1 5 10 8 8 3 2 0 0 0 0 %e A386583 0 1 5 11 12 11 5 3 1 0 0 0 0 %e A386583 0 1 6 14 14 15 8 6 1 1 0 0 0 0 %e A386583 0 1 6 16 19 20 11 9 3 2 0 0 0 0 0 %e A386583 0 1 7 18 23 27 17 14 5 3 1 0 0 0 0 0 %e A386583 0 1 7 21 29 34 23 20 9 6 1 1 0 0 0 0 0 %e A386583 0 1 8 24 34 43 32 28 13 10 3 2 0 0 0 0 0 0 %e A386583 0 1 8 26 42 53 42 38 20 15 5 3 1 0 0 0 0 0 0 %e A386583 0 1 9 30 48 66 55 52 28 23 9 6 1 1 0 0 0 0 0 0 %e A386583 0 1 9 33 58 80 70 68 41 33 14 10 3 2 0 0 0 0 0 0 0 %e A386583 ... %t A386583 sepQ[y_]:=Select[Permutations[y],Length[Split[#]]==Length[y]&]!={}; %t A386583 Table[Length[Select[IntegerPartitions[n,{k}],sepQ]],{n,0,15},{k,0,n}] %Y A386583 Separable case of A008284. %Y A386583 Row sums are A325534, ranked by A335433. %Y A386583 For inseparable instead separable we have A386584, sums A325535, ranks A335448. %Y A386583 For separable type instead of separable we have A386585, sums A336106, ranks A335127. %Y A386583 For inseparable type instead of separable we have A386586, sums A025065, ranks A335126. %Y A386583 A003242 and A335452 count anti-runs, ranks A333489, patterns A005649. %Y A386583 A124762 gives inseparability of standard compositions, separability A333382. %Y A386583 A239455 counts Look-and-Say partitions, ranks A351294. %Y A386583 A336103 counts normal separable multisets, inseparable A336102. %Y A386583 A351293 counts non-Look-and-Say partitions, ranks A351295. %Y A386583 A386633 counts separable set partitions, row sums of A386635. %Y A386583 A386634 counts inseparable set partitions, row sums of A386636. %Y A386583 Cf. A106351, A111133, A238130, A335434, A386575, A386576, A386580, A386581, A386577. %K A386583 nonn,tabl %O A386583 0,18 %A A386583 _Gus Wiseman_, Aug 03 2025