A386584 Triangle read by rows where T(n,k) is the number of length k>=0 integer partitions of n having no permutation without any adjacent equal parts (inseparable).
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 1, 1, 1, 0, 0, 1, 0, 2, 1, 2, 1, 1, 0, 0, 0, 1, 2, 2, 2, 2, 1, 1, 0, 0, 1, 0, 3, 2, 4, 2, 2, 1, 1, 0, 0, 0, 0, 3, 2, 4, 3, 3, 2, 1, 1
Offset: 0
Examples
Row n = 10 counts the following partitions: . . 55 . 7111 61111 511111 4111111 31111111 211111111 1111111111 4222 22222 421111 3211111 22111111 3331 331111 222211 Triangle begins: 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 1 1 1 1 1 0 0 0 0 2 1 1 1 0 0 1 0 2 1 2 1 1 0 0 0 1 2 2 2 2 1 1 0 0 1 0 3 2 4 2 2 1 1 0 0 0 0 3 2 4 3 3 2 1 1 0 0 1 1 3 2 6 4 4 3 2 1 1 0 0 0 0 4 3 6 5 6 4 3 2 1 1 0 0 1 0 4 3 9 6 8 5 5 3 2 1 1 0 0 0 1 4 3 9 7 10 8 6 5 3 2 1 1 0 0 1 0 5 3 12 8 13 9 10 6 5 3 2 1 1 0 0 0 0 5 4 12 10 16 12 12 9 7 5 3 2 1 1 0 0 1 1 5 4 16 11 20 15 17 12 10 7 5 3 2 1 1 0 0 0 0 6 4 16 13 24 18 21 16 14 10 7 5 3 2 1 1 0 0 1 0 6 4 20 14 29 21 28 20 19 13 11 7 5 3 2 1 1
Crossrefs
Programs
-
Mathematica
insepQ[y_]:=Select[Permutations[y],Length[Split[#]]==Length[y]&]=={}; Table[Length[Select[IntegerPartitions[n,{k}],insepQ]],{n,0,15},{k,0,n}]
Comments