This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386585 #16 Aug 09 2025 10:10:54 %S A386585 1,0,1,0,0,1,0,0,1,1,0,0,1,1,1,0,0,1,2,1,1,0,0,1,2,2,1,1,0,0,1,3,3,2, %T A386585 1,1,0,0,1,3,4,3,2,1,1,0,0,1,5,5,5,3,2,1,1,0,0,1,4,7,6,5,3,2,1,1 %N A386585 Triangle read by rows where T(n,k) is the number of integer partitions y of n into k = 0..n parts such that any multiset whose multiplicities are the parts of y is separable. %C A386585 We say that such partitions are of separable type. %C A386585 A multiset is separable iff it has a permutation without any adjacent equal parts. %F A386585 a(n) = A072233(n) - A386586(n). %e A386585 Row n = 8 counts the following partitions: %e A386585 . . 44 431 4211 41111 311111 2111111 11111111 %e A386585 422 3311 32111 221111 %e A386585 332 3221 22211 %e A386585 2222 %e A386585 with the following separable multisets: %e A386585 . . 11112222 11112223 11112234 11112345 11123456 11234567 12345678 %e A386585 11112233 11122234 11122345 11223456 %e A386585 11122233 11122334 11223345 %e A386585 11223344 %e A386585 Triangle begins: %e A386585 1 %e A386585 0 1 %e A386585 0 0 1 %e A386585 0 0 1 1 %e A386585 0 0 1 1 1 %e A386585 0 0 1 2 1 1 %e A386585 0 0 1 2 2 1 1 %e A386585 0 0 1 3 3 2 1 1 %e A386585 0 0 1 3 4 3 2 1 1 %e A386585 0 0 1 5 5 5 3 2 1 1 %e A386585 0 0 1 4 7 6 5 3 2 1 1 %t A386585 sepQ[y_]:=Select[Permutations[y],Length[Split[#]]==Length[y]&]!={}; %t A386585 mst[y_]:=Join@@Table[ConstantArray[k,y[[k]]],{k,Length[y]}]; %t A386585 Table[Length[Select[IntegerPartitions[n,{k}],sepQ[mst[#]]&]],{n,0,5},{k,0,n}] %Y A386585 This is the separable type case of A072233 or A008284. %Y A386585 Row sums are A336106, ranks A335127. %Y A386585 For separable instead of separable type we have A386583, inseparable A386584. %Y A386585 For inseparable instead of separable we have A386586, sums A025065, ranks A335126. %Y A386585 A003242 and A335452 count anti-runs, ranks A333489, patterns A005649. %Y A386585 A239455 counts Look-and-Say partitions, ranks A351294. %Y A386585 A279790 counts disjoint families on strongly normal multisets. %Y A386585 A325534 counts separable multisets, ranks A335433. %Y A386585 A325535 counts inseparable multisets, ranks A335448. %Y A386585 A336103 counts normal separable multisets, inseparable A336102. %Y A386585 A351293 counts non-Look-and-Say partitions, ranks A351295. %Y A386585 A386633 counts separable set partitions, row sums of A386635. %Y A386585 A386634 counts inseparable set partitions, row sums of A386636. %Y A386585 Cf. A005651, A106351, A111133, A238130, A335434, A386575, A386576, A386579, A386580, A386581, A386582. %K A386585 nonn,tabl,more %O A386585 0,19 %A A386585 _Gus Wiseman_, Aug 02 2025