This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386587 #7 Aug 06 2025 22:39:07 %S A386587 1,1,1,1,1,0,1,2,1,0,1,1,1,0,0,2,1,1,1,1,0,0,1,1,1,0,2,1,1,0,1,3,0,0, %T A386587 0,0,1,0,0,1,1,0,1,1,1,0,1,1,1,1,0,1,1,1,0,1,0,0,1,0,1,0,1,4,0,0,1,1, %U A386587 0,0,1,1,1,0,1,1,0,0,1,1,2,0,1,0,0,0,0 %N A386587 Number of ways to choose a pairwise disjoint family of strict integer partitions, one of each exponent in the prime factorization of n. %C A386587 First differs from A382525 at a(216) = 1, A382525(216) = 2. %e A386587 The prime exponents of 864 = 2^5 * 3^3 are (5,3), with disjoint families {{3},{5}}, {{3},{1,4}}, {{5},{1,2}}, so a(864) = 3. %t A386587 disjointFamilies[y_]:=Union[Sort/@Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&]]; %t A386587 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A386587 Table[Length[disjointFamilies[prix[n]]],{n,100}] %Y A386587 Positions of positive terms are A351294, conjugate A381432. %Y A386587 Positions of 0 are A351295, conjugate A381433. %Y A386587 For ordered set partitions we have A382525. %Y A386587 Positions of first appearances are A382775. %Y A386587 The separable case is A386575. %Y A386587 The inseparable case is A386582, see A386632. %Y A386587 A000110 counts set partitions, ordered A000670. %Y A386587 A003242 and A335452 count separations, ranks A333489. %Y A386587 A239455 counts Look-and-Say partitions, complement A351293. %Y A386587 A279790 counts disjoint families on strongly normal multisets. %Y A386587 A325534 counts separable multisets, ranks A335433, sums of A386583. %Y A386587 A325535 counts inseparable multisets, ranks A335448, sums of A386584. %Y A386587 A386633 counts separable set partitions, row sums of A386635. %Y A386587 A386634 counts inseparable set partitions, row sums of A386636. %Y A386587 Cf. A001221, A001222, A008480, A025065, A051903, A051904, A056239, A130091, A336106, A373957, A386580. %K A386587 nonn %O A386587 1,8 %A A386587 _Gus Wiseman_, Aug 06 2025