This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386621 #44 Aug 29 2025 20:55:18 %S A386621 1,1,0,1,2,2,1,4,8,0,1,6,26,32,6,1,8,56,184,136,0,1,10,98,576,1366, %T A386621 592,20,1,12,152,1328,6216,10424,2624,0,1,14,218,2560,18886,68976, %U A386621 80996,11776,70,1,16,296,4392,45256,276208,779456,637424,53344,0 %N A386621 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 4*k*x - 4*x^2). %H A386621 Seiichi Manyama, <a href="/A386621/b386621.txt">Antidiagonals n = 0..139, flattened</a> %F A386621 A(n,k) = Sum_{j=0..n} (k-i)^j * (k+i)^(n-j) * binomial(n,j)^2, where i is the imaginary unit. %F A386621 A(n,k) = Sum_{j=0..floor(n/2)} k^(n-2*j) * binomial(2*(n-j),n-j) * binomial(n-j,j). %F A386621 n*A(n,k) = 2*k*(2*n-1)*A(n-1,k) + 4*(n-1)*A(n-2,k) for n > 1. %F A386621 A(n,k) = Sum_{j=0..floor(n/2)} (k^2+1)^j * (2*k)^(n-2*j) * binomial(n,2*j) * binomial(2*j,j). %F A386621 A(n,k) = [x^n] (1 + 2*k*x + (k^2+1)*x^2)^n. %F A386621 E.g.f. of column k: exp(2*k*x) * BesselI(0, 2*sqrt(k^2+1)*x). %e A386621 Square array begins: %e A386621 1, 1, 1, 1, 1, 1, 1, ... %e A386621 0, 2, 4, 6, 8, 10, 12, ... %e A386621 2, 8, 26, 56, 98, 152, 218, ... %e A386621 0, 32, 184, 576, 1328, 2560, 4392, ... %e A386621 6, 136, 1366, 6216, 18886, 45256, 92886, ... %e A386621 0, 592, 10424, 68976, 276208, 822800, 2020392, ... %e A386621 20, 2624, 80996, 779456, 4114004, 15235520, 44758244, ... %o A386621 (PARI) a(n, k) = sum(j=0, n\2, (k^2+1)^j*(2*k)^(n-2*j)*binomial(n, 2*j)*binomial(2*j, j)); %Y A386621 Columns k=0..3 give A126869, A006139, A098443, A387428. %Y A386621 Main diagonal gives A387430. %K A386621 nonn,tabl,new %O A386621 0,5 %A A386621 _Seiichi Manyama_, Aug 29 2025