This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386627 #10 Jul 29 2025 00:28:33 %S A386627 4,9,12,16,25,27,29,32,35,35,36,40,41,42,42,47,48,49,51,54,56,56,64, %T A386627 66,74,74,74,81,84,92,98,100,103,110,119,120,121,123,136,144,146,147, %U A386627 150,162,168,169,174,175,179,188,191,196,198,204,225,227,232,236 %N A386627 Values of u in the (2,3)-quartals (m,u,v,w) having m=1; i.e., values of v for solutions to 1 + u^3 = v^2 + w^3, in positive integers, with v > 1; see Comments. %C A386627 A 4-tuple (m,u,v,w) is a (p,q)-quartal if m,u,v,w are positive integers such that m<v and m^p + u^q = v^p + w^q. Here, p=2, q=3, m=1. %C A386627 Includes all squares > 1, as 1 + (i^2)^3 = v^2 + w^3 with w = 1, v = i^3. - _Robert Israel_, Jul 28 2025 %e A386627 First 20 (2,3)-quartals (1,u,v,w): %e A386627 m u v w %e A386627 1 4 8 1 %e A386627 1 9 27 1 %e A386627 1 12 27 10 %e A386627 1 16 64 1 %e A386627 1 25 125 1 %e A386627 1 27 134 12 %e A386627 1 29 123 21 %e A386627 1 32 181 2 %e A386627 1 35 126 30 %e A386627 1 35 207 3 %e A386627 1 36 216 1 %e A386627 1 40 251 10 %e A386627 1 41 253 17 %e A386627 1 42 217 30 %e A386627 1 42 269 12 %e A386627 1 47 300 24 %e A386627 1 48 267 34 %e A386627 1 49 343 1 %e A386627 1 51 242 42 %e A386627 1 54 379 24 %e A386627 1^2 + 12^3 = 27^2 + 10^3 = 1729, so (1,12,27,10) is in the list. %p A386627 f:= proc(u) local t; %p A386627 t:= 1+u^3; %p A386627 u$nops(select(w -> issqr(t-w^3), [$1 .. u-1])) %p A386627 end proc: %p A386627 map(f, [$1..1000]); # _Robert Israel_, Jul 28 2025 %t A386627 quart[m_, p_, q_, max_] := Module[{ans = {}, lhsD = <||>, lhs, v, u, w, rhs}, %t A386627 For[u = 1, u <= max, u++, lhs = m^p + u^q; %t A386627 AssociateTo[lhsD, lhs -> Append[Lookup[lhsD, lhs, {}], u]];]; %t A386627 For[v = m + 1, v <= max, v++, %t A386627 For[w = 1, w <= max, w++, rhs = v^p + w^q; %t A386627 If[KeyExistsQ[lhsD, rhs], %t A386627 Do[AppendTo[ans, {m, u, v, w}], {u, lhsD[rhs]}];];];]; %t A386627 Do[Print["Solution ", i, ": ", ans[[i]], " (", m, "^", p, " + ", %t A386627 ans[[i, 2]], "^", q, " = ", ans[[i, 3]], "^", p, " + ", %t A386627 ans[[i, 4]], "^", q, " = ", m^p + ans[[i, 2]]^q, ")"], {i, %t A386627 Length[ans]}]; ans]; %t A386627 solns = quart[1, 2, 3, 6000] %t A386627 (* _Peter J. C. Moses_, Jun 21 2025 *) %Y A386627 Cf. A385882, A386215, A386217, A386628, A386629. %K A386627 nonn %O A386627 1,1 %A A386627 _Clark Kimberling_, Jul 28 2025