This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386631 #6 Aug 26 2025 23:27:30 %S A386631 5,6,7,8,8,8,9,10,10,11,11,11,12,12,12,13,14,14,14,14,14,15,16,16,16, %T A386631 17,17,17,17,17,18,18,18,19,20,20,20,20,20,20,21,22,22,22,22,22,23,23, %U A386631 23,23,23,24,24,24,25,26,26,26,26,26,26,26,27,27,27,28 %N A386631 Values of u in the quartets (2, u, v, w) of type 3; i.e., values of u for solutions to 2(2 - u) = v(v - w), in distinct positive integers, with v > 1, sorted by nondecreasing values of u; see Comments. %C A386631 A 4-tuple (m, u, v, w) is a quartet of type 3 if m, u, v, w are distinct positive integers such that m < v and m*(m - u) = v*(v - w). Here, the values of u are arranged in nondecreasing order. When there is more than one solution for given m and u, the values of v are arranged in increasing order. Here, m = 2. %e A386631 First 20 quartets (2,u,v,w) of type 3: %e A386631 m u v w %e A386631 2 5 6 7 %e A386631 2 6 8 9 %e A386631 2 7 10 11 %e A386631 2 8 3 7 %e A386631 2 8 4 7 %e A386631 2 8 12 13 %e A386631 2 9 14 15 %e A386631 2 10 4 8 %e A386631 2 10 16 17 %e A386631 2 11 3 9 %e A386631 2 11 6 9 %e A386631 2 11 18 19 %e A386631 2 12 4 9 %e A386631 2 12 5 9 %e A386631 2 12 20 21 %e A386631 2 13 22 23 %e A386631 2 14 3 11 %e A386631 2 14 4 10 %e A386631 2 14 6 10 %e A386631 2 14 8 11 %e A386631 2(2-10) = 4(4-8), so (2, 10, 4, 8) is in the list. %t A386631 ssolnsM[m_Integer?Positive, u_Integer?Positive] := %t A386631 Module[{n = m (m - u), nn, sgn, ds, tups}, If[n == 0, Return[{}]]; %t A386631 sgn = Sign[n]; nn = Abs[n]; %t A386631 ds = Divisors[nn]; %t A386631 If[sgn > 0, ds = Select[ds, # < nn/# &]]; %t A386631 tups = ({m, u, nn/#, nn/# - sgn #} & /@ ds); %t A386631 Select[tups, #[[3]] > 1 && #[[4]] > 0 && #[[2]] =!= #[[4]] && %t A386631 Length@DeleteDuplicates[#] == 4 &]]; %t A386631 (solns = Sort[Flatten[Map[solnsM[2, #] &, Range[2, 60]], 1]]) // ColumnForm %t A386631 Map[#[[2]] &, solns] (*A386631*) %t A386631 Map[#[[3]] &, solns] (*A387225*) %t A386631 Map[#[[4]] &, solns] (*A387226*) %t A386631 (* _Peter J. C. Moses_, Aug 22 2025 *) %Y A386631 Cf. A385182 (type 1), A386218 (type 2), A385476 (type 3, m=1), A387225, A387226. %K A386631 nonn,new %O A386631 1,1 %A A386631 _Clark Kimberling_, Aug 22 2025