A386632 Numbers k such that there is a disjoint inseparable way to choose a strict integer partition of each exponent in the prime factorization of k.
8, 16, 27, 32, 64, 81, 125, 128, 243, 256, 343, 512, 625, 729, 1024, 1331, 1536, 2048, 2187, 2197, 2304, 2401, 2560, 3072, 3125, 3456, 3584, 4096, 4608, 4913, 5120, 5184, 5632, 6144, 6400, 6561, 6656, 6859, 6912, 7168, 8192, 8704, 9216, 9728, 10240, 11264
Offset: 1
Keywords
Examples
The prime indices of 2304 are {1,1,1,1,1,1,1,1,2,2}, and we have disjoint inseparable choice {{4,3,1},{2}}, so 2304 is in the sequence. The terms together with their prime indices begin: 8: {1,1,1} 16: {1,1,1,1} 27: {2,2,2} 32: {1,1,1,1,1} 64: {1,1,1,1,1,1} 81: {2,2,2,2} 125: {3,3,3} 128: {1,1,1,1,1,1,1} 243: {2,2,2,2,2} 256: {1,1,1,1,1,1,1,1} 343: {4,4,4} 512: {1,1,1,1,1,1,1,1,1} 625: {3,3,3,3} 729: {2,2,2,2,2,2}
Crossrefs
Also positions of positive terms in A386582.
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; dsj[y_]:=Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&]; insepQ[y_]:=2*Max[y]>Total[y]+1; Join@@Position[Sign[Table[Length[Select[dsj[prix[n]],insepQ[Length/@#]&]],{n,1000}]],1]
Comments