A386635 Triangle read by rows where T(n,k) is the number of separable type set partitions of {1..n} into k blocks.
1, 0, 1, 0, 0, 1, 0, 0, 3, 1, 0, 0, 3, 6, 1, 0, 0, 10, 25, 10, 1, 0, 0, 10, 75, 65, 15, 1, 0, 0, 35, 280, 350, 140, 21, 1, 0, 0, 35, 770, 1645, 1050, 266, 28, 1, 0, 0, 126, 2737, 7686, 6951, 2646, 462, 36, 1, 0, 0, 126, 7455, 32725, 42315, 22827, 5880, 750, 45, 1
Offset: 0
Examples
Row n = 4 counts the following set partitions: . . {{1,2},{3,4}} {{1},{2},{3,4}} {{1},{2},{3},{4}} {{1,3},{2,4}} {{1},{2,3},{4}} {{1,4},{2,3}} {{1},{2,4},{3}} {{1,2},{3},{4}} {{1,3},{2},{4}} {{1,4},{2},{3}} Triangle begins: 1 0 1 0 0 1 0 0 3 1 0 0 3 6 1 0 0 10 25 10 1 0 0 10 75 65 15 1 0 0 35 280 350 140 21 1
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; stnseps[stn_]:=Select[Permutations[Union@@stn],And@@Table[Position[stn,#[[i]]][[1,1]]!=Position[stn,#[[i+1]]][[1,1]],{i,Length[#]-1}]&]; Table[Length[Select[sps[Range[n]],Length[#]==k&&stnseps[#]!={}&]],{n,0,5},{k,0,n}]
Comments