A386636 Triangle read by rows where T(n,k) is the number of inseparable type set partitions of {1..n} into k blocks.
0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 4, 0, 0, 0, 1, 5, 0, 0, 0, 0, 1, 21, 15, 0, 0, 0, 0, 1, 28, 21, 0, 0, 0, 0, 0, 1, 92, 196, 56, 0, 0, 0, 0, 0, 1, 129, 288, 84, 0, 0, 0, 0, 0, 0, 1, 385, 1875, 1380, 210, 0, 0, 0, 0, 0, 0, 1, 561, 2860, 2145, 330, 0, 0, 0, 0, 0, 0
Offset: 0
Examples
Row n = 6 counts the following set partitions: . {123456} {1}{23456} {1}{2}{3456} . . . {12}{3456} {1}{2345}{6} {13}{2456} {1}{2346}{5} {14}{2356} {1}{2356}{4} {15}{2346} {1}{2456}{3} {16}{2345} {1234}{5}{6} {1234}{56} {1235}{4}{6} {1235}{46} {1236}{4}{5} {1236}{45} {1245}{3}{6} {1245}{36} {1246}{3}{5} {1246}{35} {1256}{3}{4} {1256}{34} {1345}{2}{6} {1345}{26} {1346}{2}{5} {1346}{25} {1356}{2}{4} {1356}{24} {1456}{2}{3} {1456}{23} {12345}{6} {12346}{5} {12356}{4} {12456}{3} {13456}{2} Triangle begins: 0 0 0 0 1 0 0 1 0 0 0 1 4 0 0 0 1 5 0 0 0 0 1 21 15 0 0 0 0 1 28 21 0 0 0 0 0 1 92 196 56 0 0 0 0 0 1 129 288 84 0 0 0 0 0 0 1 385 1875 1380 210 0 0 0 0 0
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; stnseps[stn_]:=Select[Permutations[Union@@stn],And@@Table[Position[stn,#[[i]]][[1,1]]!=Position[stn,#[[i+1]]][[1,1]],{i,Length[#]-1}]&] Table[Length[Select[sps[Range[n]],Length[#]==k&&stnseps[#]=={}&]],{n,0,5},{k,0,n}]
Comments