This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386703 #21 Jul 31 2025 01:09:52 %S A386703 0,0,1,1,1,-1,0,-2,-2,2,-4,2,-7,3,-13,7,-7,17,4,-13,32,23,7,-11,-30, %T A386703 -39,-62,-56,-43,-20,42,159,-161,22,258,-59,357,95,-239,-504,483,412, %U A386703 471,719,-978,-426,434,-1137,533,-622,-1780,2087,2251,-2669,-1562,831,-3372,1772 %N A386703 The residue of p(n) modulo q(n) in the interval (-q(n)/2, q(n)/2], where p(n) = A000041(n) and q(n) = A000009(n). %C A386703 Conjecture: |a(n)| > 1 for all n > 7. %C A386703 This has been verified for all n = 8..10^5. %C A386703 Verified for all n <= 2000000. - _Vaclav Kotesovec_, Jul 30 2025 %H A386703 Zhi-Wei Sun, <a href="/A386703/b386703.txt">Table of n, a(n) for n = 1..10000</a> %H A386703 Zhi-Wei Sun, <a href="https://mathoverflow.net/questions/498447">A conjecture involving the partition function and the strict partition function</a>, Question 498447 at MathOverflow, July 30, 2025. %e A386703 a(6) = -1 since p(6) = 11 is congruent to -1 modulo q(6) = 4. %e A386703 a(7) = 0 since p(7) = 15 is congruent to 0 modulo q(7) = 5. %t A386703 rMod[m_,n_]:=Mod[Numerator[m]*PowerMod[Denominator[m],-1,n],n,(1-n)/2]; %t A386703 a[n_]=rMod[PartitionsP[n],PartitionsQ[n]];Table[a[n],{n,1,70}] %Y A386703 Cf. A000009, A000041. %K A386703 sign %O A386703 1,8 %A A386703 _Zhi-Wei Sun_, Jul 30 2025