A386706 Expansion of ((Product_{k>=1} (1 - x^k)^2/(1 - 4*x^k + x^(2k))) - 1)/2.
0, 1, 5, 18, 71, 260, 990, 3672, 13775, 51343, 191860, 715770, 2672298, 9972092, 37220040, 138903480, 518408351, 1934712530, 7220497115, 26947209762, 100568547820, 375326739216, 1400739172470, 5227629044040, 19509779871450, 72811487038701, 271736178975820, 1014133216234068
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
- Christian Kassel and Christophe Reutenauer, Counting the ideals of given codimension of the algebra of Laurent polynomials in two variables, arXiv:1505.07229 [math.AG], 2015-2016; Michigan Math. J. 67 (2018), 715-741.
- Christian Kassel and Christophe Reutenauer, Complete determination of the zeta function of the Hilbert scheme of n points on a two-dimensional torus, arXiv:1610.07793 [math.NT], 2016; The Ramanujan Journal 46 (2018), 633-655.
- Christian Kassel and Christophe Reutenauer, Pairs of intertwined integer sequences, arXiv:2507.15780 [math.NT], 2025.
Programs
-
Mathematica
nmax = 30; CoefficientList[Series[(Product[(1 - x^k)^2/(1 - 4*x^k + x^(2*k)), {k, 1, nmax}] - 1)/2, {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 30 2025 *)
Formula
G.f.: ((Product_{k>=1} (1 - x^k)^2/(1 - 4*x^k + x^(2k))) - 1)/2.
a(2^k) = A001834(2^k-1) for all nonnegative integers k. Follows from Cor. 4.5 of Kassel-Reutenauer paper "Pairs of intertwined integer sequences".
a(n) ~ (1 + sqrt(3))^(2*n-1) / 2^n. - Vaclav Kotesovec, Jul 30 2025
Extensions
a(0)=0 added, offset changed to 0, a(7) corrected and more terms added by Vaclav Kotesovec, Jul 30 2025
Comments