A386713 Decimal expansion of Integral_{x=0..1} {1/x}^2 * {1/(1-x)}^2 dx, where {} denotes fractional part.
0, 4, 2, 6, 4, 5, 6, 0, 6, 0, 3, 1, 2, 5, 0, 4, 9, 1, 8, 1, 6, 5, 8, 9, 5, 3, 0, 9, 1, 5, 3, 3, 1, 3, 9, 4, 7, 2, 2, 5, 4, 2, 4, 4, 5, 3, 4, 2, 5, 7, 2, 9, 0, 7, 3, 1, 4, 1, 4, 3, 3, 8, 4, 3, 2, 2, 6, 5, 4, 6, 6, 0, 3, 0, 7, 4, 2, 4, 4, 9, 7, 8, 1, 0, 1, 5, 8, 1, 3, 5, 9, 2, 0, 6, 4, 6, 5, 8, 2, 9, 1, 7, 5, 1, 9
Offset: 0
Examples
0.04264560603125049181658953091533139472254244534257...
References
- Ovidiu Furdui, Limits, Series, and Fractional Part Integrals: Problems in Mathematical Analysis, New York: Springer, 2013. See section 2.11, page 101.
Links
- Ovidiu Furdui, A class of fractional part integrals and zeta function values, Integral Transforms and Special Functions, Vol. 24, No. 6 (2013), pp. 485-490.
Crossrefs
Programs
-
Mathematica
RealDigits[4*Log[2*Pi] - 4*EulerGamma - 5, 10, 120, -1][[1]]
-
PARI
4*log(2*Pi) - 4*Euler - 5
Formula
Equals 4*log(2*pi) - 4*gamma - 5.
Equals 4*A345208 - 1.
In general, for m >= 2, Integral_{x=0..1} {1/x}^m * {1/(1-x)}^m dx = 2 * (Sum_{j=2..m-1} (-1)^(m+j-1) * (zeta(j)-1)) + (-1)^m - (2*m) * Sum_{k>=0} (zeta(2*k+m) - zeta(2*k+m+1))/(k+m) (note that the first sum vanishes when m = 2).