cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386714 Decimal expansion of Integral_{x=0..1} {1/x}^3 * {1/(1-x)}^3 dx, where {} denotes fractional part.

Original entry on oeis.org

0, 1, 4, 6, 1, 1, 7, 0, 2, 6, 1, 6, 5, 3, 2, 6, 9, 5, 6, 8, 4, 2, 7, 2, 0, 3, 5, 4, 7, 3, 8, 7, 3, 5, 6, 5, 0, 7, 6, 0, 6, 8, 1, 1, 5, 0, 2, 6, 8, 3, 5, 6, 1, 6, 8, 7, 0, 7, 2, 8, 0, 1, 8, 3, 5, 6, 3, 5, 6, 5, 4, 6, 7, 9, 9, 4, 4, 6, 5, 8, 5, 9, 8, 3, 1, 9, 6, 3, 1, 7, 5, 9, 4, 3, 4, 6, 3, 7, 1, 1, 5, 7, 3, 9, 8
Offset: 0

Views

Author

Amiram Eldar, Jul 31 2025

Keywords

Examples

			0.01461170261653269568427203547387356507606811502683...
		

References

  • Ovidiu Furdui, Limits, Series, and Fractional Part Integrals: Problems in Mathematical Analysis, New York: Springer, 2013. See section 2.11, page 101.

Crossrefs

Cf. A001620 (gamma), A013661, A061444, A074962 (A), A225746.
Cf. A147533 (m=1), A386713 (m=2), this constant (m=3).

Programs

  • Mathematica
    RealDigits[-Zeta[2] + 3*EulerGamma + 36*Log[Glaisher] - 6*Log[2*Pi] + 2, 10, 120, -1][[1]]
  • PARI
    -zeta(2) + 3*Euler + 36*(1/12-zeta'(-1)) - 6*log(2*Pi) + 2

Formula

Equals -zeta(2) + 3*gamma + 36*log(A) - 6*log(2*Pi) + 2, where gamma is Euler's constant and A is the Glaisher-Kinkelin constant.
In general, for m >= 2, Integral_{x=0..1} {1/x}^m * {1/(1-x)}^m dx = 2 * (Sum_{j=2..m-1} (-1)^(m+j-1) * (zeta(j)-1)) + (-1)^m - (2*m) * Sum_{k>=0} (zeta(2*k+m) - zeta(2*k+m+1))/(k+m) (note that the first sum vanishes when m = 2).