cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386729 a(n) = [x^n] G(x)^n, where G(x) = Product_{k >= 1} (1 + x^k)^(k^3) is the g.f. of A248882.

This page as a plain text file.
%I A386729 #11 Jul 31 2025 10:06:11
%S A386729 1,1,17,154,1377,13276,127862,1249746,12321121,122287798,1220492192,
%T A386729 12235940113,123133325382,1243080020352,12583773308102,
%U A386729 127688996851804,1298370095026017,13226355435367992,134955405683954234,1379032238329708409,14110075394718902752,144544237021110644340
%N A386729 a(n) = [x^n] G(x)^n, where G(x) = Product_{k >= 1} (1 + x^k)^(k^3) is the g.f. of A248882.
%H A386729 Vaclav Kotesovec, <a href="/A386729/b386729.txt">Table of n, a(n) for n = 0..975</a>
%F A386729 a(n) = [x^n] exp(n*Sum_{k >= 1} s_4(k)*x^k/k), where s_4(n) = Sum_{d divides n} (-1)^(n/d+1)*d^4 = A284900(n).
%F A386729 a(n) ~ c * d^n / sqrt(n), where d = 10.49088673566991578441632677715184699104285539252671173854512548234581416... and c = 0.2449508761900081824436717230940007974244164508939377916825513986093942...
%t A386729 Table[SeriesCoefficient[Product[(1+x^k)^(n*k^3), {k, 1, n}], {x, 0, n}], {n, 0, 25}]
%t A386729 Table[SeriesCoefficient[Exp[n*Sum[Sum[(-1)^(k/d + 1)*d^4, {d, Divisors[k]}]*x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 25}]
%Y A386729 Cf. A248882, A284900, A386720.
%Y A386729 Cf. A270913, A270922, A380291.
%K A386729 nonn
%O A386729 0,3
%A A386729 _Vaclav Kotesovec_, Jul 31 2025