A386730 a(n) is the 3-adic valuation of A027856(n).
0, 1, 1, 2, 2, 3, 1, 3, 2, 4, 7, 10, 1, 5, 15, 5, 4, 5, 4, 7, 8, 2, 9, 7, 24, 12, 8, 15, 9, 2, 25, 20, 10, 64, 63, 27, 88, 99, 2, 16, 10, 169, 135, 51, 141, 52, 231, 320, 44, 419, 143, 476, 207, 332, 97, 324, 738, 1493, 1320, 333, 1167, 188, 1440, 2251, 2033
Offset: 1
Keywords
Examples
a(1) = 0 because A027856(1) = 4 = 2^2 * 3^0 a(2) = 1 because A027856(2) = 6 = 2^1 * 3^1 a(3) = 1 because A027856(3) = 12 = 2^2 * 3^1 a(4) = 2 because A027856(4) = 18 = 2^1 * 3^2 a(5) = 2 because A027856(5) = 72 = 2^3 * 3^2
Links
- Ken Clements, Table of n, a(n) for n = 1..82
Programs
-
Mathematica
seq[max_] := IntegerExponent[Select[Sort[Flatten[Table[2^i*3^j, {i, 1, Floor[Log2[max]]}, {j, 0, Floor[Log[3, max/2^i]]}]]], And @@ PrimeQ[# + {-1, 1}] &], 3]; seq[10^250] (* Amiram Eldar, Aug 01 2025 *)
-
Python
from math import log10 from gmpy2 import is_prime l2, l3 = log10(2), log10(3) upto_digits = 200 sum_limit = 2 + int((upto_digits - l3)/l2) def TP_pi_2_upto_sum(limit): # Search all partitions up to the given exponent sum. unsorted_result = [(0, log10(4)), (1, log10(6))] for exponent_sum in range(3, limit+1, 2): for i in range(1, exponent_sum): j = exponent_sum - i log_N = i*l2 + j*l3 if log_N <= upto_digits: N = 2**i * 3**j if is_prime(N-1) and is_prime(N+1): unsorted_result.append((j, log_N)) sorted_result = sorted(unsorted_result, key=lambda x: x[1]) return sorted_result print([j for j, _ in TP_pi_2_upto_sum(sum_limit) ])
Comments