cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386734 Decimal expansion of Integral_{x=0..1} Integral_{y=0..1} Integral_{z=0..1} {1/(x+y+z)} dx dy dz, where {} denotes fractional part.

This page as a plain text file.
%I A386734 #9 Aug 01 2025 11:08:36
%S A386734 1,8,3,8,4,3,7,6,4,0,6,7,0,2,4,6,1,2,0,7,5,3,4,1,7,5,6,6,4,6,5,8,1,2,
%T A386734 6,7,0,7,8,2,1,3,5,5,7,8,7,0,5,9,1,5,6,7,1,8,5,9,0,8,6,6,6,7,3,7,4,4,
%U A386734 3,4,8,4,7,7,2,4,1,5,5,1,2,2,0,2,8,6,2,9,9,7,8,7,8,6,1,4,6,4,5,2,2,0,7,5,6
%N A386734 Decimal expansion of Integral_{x=0..1} Integral_{y=0..1} Integral_{z=0..1} {1/(x+y+z)} dx dy dz, where {} denotes fractional part.
%H A386734 Ovidiu Furdui, <a href="https://doi.org/10.18514/MMN.2016.748">Multiple Fractional Part Integrals and Euler's Constant</a>, Miskolc Mathematical Notes, Vol. 17, No. 1 (2016), pp. 255-266.
%F A386734 Equals 9*log(3)/2 - 6*log(2) - zeta(3)/2.
%e A386734 0.18384376406702461207534175664658126707821355787059...
%t A386734 RealDigits[9*Log[3]/2 - 6*Log[2] - Zeta[3]/2, 10, 120][[1]]
%o A386734 (PARI) 9*log(3)/2 - 6*log(2) - zeta(3)/2
%Y A386734 Cf. A002117, A002162, A002391, A153810, A386733, A386736, A386737.
%K A386734 nonn,cons
%O A386734 0,2
%A A386734 _Amiram Eldar_, Aug 01 2025