cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386736 Decimal expansion of Integral_{x=0..1} Integral_{y=0..1} Integral_{z=0..1} {1/(x+y+z)}^2 dx dy dz, where {} denotes fractional part.

This page as a plain text file.
%I A386736 #6 Aug 01 2025 11:08:28
%S A386736 3,8,8,5,4,7,7,2,2,3,5,4,0,3,9,3,2,8,6,7,2,2,9,8,1,2,9,9,5,5,2,3,6,4,
%T A386736 3,1,1,7,9,8,7,3,1,0,0,4,3,5,4,0,0,2,8,2,9,3,2,0,2,5,4,2,5,2,6,2,5,7,
%U A386736 1,2,3,9,4,6,4,0,8,9,0,6,5,6,7,7,6,5,1,9,0,1,8,3,2,4,6,6,8,6,4,9,7,9,7,3,1
%N A386736 Decimal expansion of Integral_{x=0..1} Integral_{y=0..1} Integral_{z=0..1} {1/(x+y+z)}^2 dx dy dz, where {} denotes fractional part.
%H A386736 Ovidiu Furdui, <a href="https://doi.org/10.18514/MMN.2016.748">Multiple Fractional Part Integrals and Euler's Constant</a>, Miskolc Mathematical Notes, Vol. 17, No. 1 (2016), pp. 255-266.
%F A386736 Equals 6*log(2) - 3*log(3) -(zeta(2) + zeta(3))/6.
%e A386736 0.3885477223540393286722981299552364311798731004354002...
%t A386736 RealDigits[6*Log[2] - 3*Log[3] - (Zeta[2] + Zeta[3])/6, 10, 120][[1]]
%o A386736 (PARI) 6*log(2) - 3*log(3) -(zeta(2) + zeta(3))/6
%Y A386736 Cf. A002117, A002162, A002391, A013661, A386734, A386735, A386737.
%K A386736 nonn,cons
%O A386736 0,1
%A A386736 _Amiram Eldar_, Aug 01 2025