A386737 Decimal expansion of Integral_{x=0..1} Integral_{y=0..1} Integral_{z=0..1} {1/(x+y+z)}^3 dx dy dz, where {} denotes fractional part.
2, 7, 6, 0, 6, 7, 8, 7, 3, 8, 0, 4, 7, 1, 4, 7, 9, 4, 5, 8, 3, 7, 9, 1, 5, 7, 2, 6, 5, 2, 7, 1, 5, 4, 8, 8, 9, 2, 3, 8, 4, 6, 8, 8, 5, 3, 7, 5, 9, 1, 3, 9, 5, 5, 5, 5, 0, 8, 4, 2, 0, 5, 1, 9, 0, 3, 4, 1, 4, 6, 1, 5, 0, 3, 4, 0, 7, 7, 6, 7, 4, 4, 0, 3, 3, 8, 9, 4, 8, 4, 5, 0, 9, 8, 6, 9, 0, 8, 5, 6, 3, 9, 9, 6, 6
Offset: 0
Examples
0.27606787380471479458379157265271548892384688537591...
Links
- Ovidiu Furdui, Multiple Fractional Part Integrals and Euler's Constant, Miskolc Mathematical Notes, Vol. 17, No. 1 (2016), pp. 255-266.
Programs
-
Mathematica
RealDigits[Log[3]/2 - 3*Log[2]/2 + 5/3 - EulerGamma/2 - Zeta[2]/4 - Zeta[3]/6, 10, 120][[1]]
-
PARI
log(3)/2 - 3*log(2)/2 + 5/3 - Euler/2 - zeta(2)/4 - zeta(3)/6
Formula
Equals log(3)/2 - 3*log(2)/2 + 5/3 - gamma/2 - zeta(2)/4 - zeta(3)/6.