A386738 Decimal expansion of Integral_{x=0..1} {1/x}^4 dx, where {} denotes fractional part.
1, 4, 5, 5, 3, 2, 8, 9, 4, 8, 7, 9, 1, 3, 2, 8, 7, 1, 9, 7, 7, 4, 5, 5, 9, 6, 4, 9, 4, 7, 2, 2, 4, 4, 0, 1, 6, 6, 5, 6, 6, 6, 4, 6, 3, 7, 9, 5, 1, 4, 2, 5, 5, 0, 1, 6, 6, 9, 0, 0, 5, 9, 5, 7, 3, 2, 9, 9, 9, 1, 4, 2, 9, 3, 8, 3, 6, 0, 2, 9, 7, 5, 2, 7, 9, 2, 6, 6, 1, 2, 4, 9, 9, 1, 2, 5, 5, 9, 2, 8, 2, 3, 8, 5, 9
Offset: 0
Examples
0.14553289487913287197745596494722440166566646379514...
Links
- Ovidiu Furdui, Problem 3366, Crux Mathematicorum, Vol. 34, No. 6 (2008), pp. 362 and 365; Solution to Problem 3366, by Chip Curtis, ibid., Vol. 35, No. 6 (2009), pp. 403-405.
- Huizeng Qin and Youmin Lu, Integrals of Fractional Parts and Some New Identities on Bernoulli Numbers, Int. J. Contemp. Math. Sciences, Vol. 6, No. 15 (2011), pp. 745-761.
Crossrefs
Programs
-
Mathematica
RealDigits[Log[2*Pi] - 2*EulerGamma - 1/3 + (Zeta[3]/2 + Zeta'[2])/Zeta[2], 10, 120][[1]]
-
PARI
log(2*Pi) - 2*Euler - 1/3 + (zeta(3)/2 + zeta'(2))/zeta(2)
Formula
Equals log(2*Pi) - 2*gamma - 1/3 + 3*zeta(3)/Pi^2 + 6*zeta'(2)/Pi^2.
In general, for m >= 2, Integral_{x=0..1} {1/x}^m dx = log(2*Pi) - m*gamma/2 - 1/(m-1) - Sum_{k=1..floor((m-2)/2)} (-1)^k * (m!/(m-2*k-1)!) * zeta(2*k+1) / (2^(2*k+1) * Pi^(2*k)) + 2 * Sum_{k=1..floor((m-1)/2)} (-1)^(k-1) * (m!/(m-2*k)!) * zeta'(2*k) / (2*Pi)^(2*k).