cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A386739 Decimal expansion of the volume of a sphenocorona with unit edges.

Original entry on oeis.org

1, 5, 1, 5, 3, 5, 1, 6, 3, 9, 9, 7, 6, 4, 0, 6, 5, 5, 9, 7, 2, 8, 4, 7, 9, 3, 1, 2, 4, 7, 1, 8, 1, 2, 9, 0, 4, 8, 2, 2, 8, 6, 9, 5, 0, 6, 8, 0, 8, 7, 9, 4, 2, 6, 6, 7, 5, 9, 9, 0, 4, 6, 3, 0, 5, 1, 0, 3, 0, 9, 2, 7, 0, 6, 4, 4, 3, 2, 9, 3, 0, 7, 9, 9, 0, 9, 2, 3, 6, 5
Offset: 1

Views

Author

Paolo Xausa, Aug 01 2025

Keywords

Comments

The sphenocorona is Johnson solid J_86.

Examples

			1.5153516399764065597284793124718129048228695068...
		

Crossrefs

Cf. A010482 (surface area - 2), A178809 (surface area + 4).

Programs

  • Mathematica
    First[RealDigits[Sqrt[1 + 3*Sqrt[3/2] + Sqrt[13 + Sqrt[54]]]/2, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J86", "Volume"], 10, 100]]

Formula

Equals sqrt(1 + 3*sqrt(3/2) + sqrt(13 + 3*sqrt(6)))/2 = sqrt(1 + 3*A115754 + sqrt(13 + A010507))/2.
Equals A386740 - A020775.
Equals the largest real root of 1024*x^8 - 1024*x^6 - 3008*x^4 - 96*x^2 + 9.

A386740 Decimal expansion of the volume of an augmented sphenocorona with unit edges.

Original entry on oeis.org

1, 7, 5, 1, 0, 5, 3, 9, 0, 0, 3, 7, 1, 9, 2, 2, 4, 0, 1, 1, 9, 5, 4, 2, 7, 4, 3, 3, 1, 7, 3, 4, 2, 9, 2, 5, 1, 2, 5, 1, 1, 4, 8, 1, 5, 2, 7, 0, 4, 9, 5, 2, 2, 7, 8, 9, 5, 6, 0, 1, 7, 9, 2, 0, 1, 7, 5, 4, 3, 1, 3, 5, 0, 3, 8, 8, 0, 1, 3, 8, 1, 4, 4, 6, 5, 9, 8, 8, 2, 4
Offset: 1

Views

Author

Paolo Xausa, Aug 01 2025

Keywords

Comments

The augmented sphenocorona is Johnson solid J_87.

Examples

			1.7510539003719224011954274331734292512511481527...
		

Crossrefs

Cf. A010502 (surface area - 1).

Programs

  • Mathematica
    First[RealDigits[Sqrt[1 + 3*Sqrt[3/2] + Sqrt[13 + Sqrt[54]]]/2 + 1/Sqrt[18], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J87", "Volume"], 10, 100]]

Formula

Equals sqrt(1 + 3*sqrt(3/2) + sqrt(13 + 3*sqrt(6)))/2 + 1/(3*sqrt(2)) = sqrt(1 + 3*A115754 + sqrt(13 + A010507))/2 + A020775.
Equals A386739 + A020775.
Equals the largest real root of 45137758519296*x^16 - 110336743047168*x^14 - 191069246324736*x^12 + 209269081571328*x^10 + 364547659290624*x^8 - 58793017190400*x^6 + 3306865979520*x^4 - 1275399855936*x^2 + 1439671249.

A386742 Decimal expansion of the surface area of a hebesphenomegacorona with unit edges.

Original entry on oeis.org

1, 0, 7, 9, 4, 2, 2, 8, 6, 3, 4, 0, 5, 9, 9, 4, 7, 8, 2, 0, 8, 7, 3, 5, 0, 8, 5, 3, 6, 7, 7, 6, 4, 2, 5, 6, 5, 1, 2, 4, 2, 6, 2, 3, 6, 4, 2, 1, 4, 6, 7, 1, 2, 8, 2, 6, 2, 5, 1, 1, 3, 1, 4, 0, 7, 5, 3, 3, 6, 9, 8, 5, 7, 6, 0, 8, 9, 6, 0, 0, 1, 6, 6, 8, 6, 5, 1, 5, 7, 8
Offset: 2

Views

Author

Paolo Xausa, Aug 01 2025

Keywords

Comments

The hebesphenomegacorona is Johnson solid J_89.

Examples

			10.794228634059947820873508536776425651242623642...
		

Crossrefs

Cf. A386741 (volume).
Cf. A002194.

Programs

  • Mathematica
    First[RealDigits[3 + 9/2*Sqrt[3], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J89", "SurfaceArea"], 10, 100]]

Formula

Equals 3 + (9/2)*sqrt(3) = 3 + (9/2)*A002194.
Showing 1-3 of 3 results.