A386752 Decimal expansion of the volume of a disphenocingulum with unit edges.
3, 7, 7, 7, 6, 4, 5, 3, 4, 1, 8, 5, 8, 5, 7, 5, 2, 4, 2, 8, 8, 1, 8, 1, 3, 1, 1, 3, 2, 6, 1, 0, 9, 6, 4, 7, 3, 3, 9, 5, 2, 2, 6, 7, 0, 2, 5, 2, 6, 4, 7, 8, 9, 6, 7, 0, 5, 1, 5, 4, 6, 1, 9, 2, 3, 5, 3, 5, 9, 9, 6, 8, 4, 4, 2, 4, 8, 2, 4, 5, 9, 6, 2, 5, 3, 3, 7, 5, 4, 0
Offset: 1
Examples
3.7776453418585752428818131132610964733952267025...
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
- Wikipedia, Disphenocingulum.
Crossrefs
Cf. A385257 (surface area + 2).
Programs
-
Mathematica
First[RealDigits[Root[1213025622610333925376*#^24 + 54451372392730545094656*#^22 - 796837093078664749252608*#^20 - 4133410366404688544268288*#^18 + 20902529024429842816303104*#^16 - 133907540390420673677230080*#^14 + 246234688242991598853881856*#^12 - 63327534106871321714442240*#^10 + 14389309497459555704164608*#^8 + 48042947402464500749392128*#^6 - 5891096640600351061013664*#^4 - 3212114716816853362953264*#^2 + 479556973248657693884401 &, 8], 10, 100]] (* or *) First[RealDigits[PolyhedronData["J90", "Volume"], 10, 100]]
Formula
Equals the largest real root of 1213025622610333925376*x^24 + 54451372392730545094656*x^22 - 796837093078664749252608*x^20 - 4133410366404688544268288*x^18 + 20902529024429842816303104*x^16 - 133907540390420673677230080*x^14 + 246234688242991598853881856*x^12 - 63327534106871321714442240*x^10 + 14389309497459555704164608*x^8 + 48042947402464500749392128*x^6 - 5891096640600351061013664*x^4 - 3212114716816853362953264*x^2 + 479556973248657693884401.
Comments