cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386752 Decimal expansion of the volume of a disphenocingulum with unit edges.

Original entry on oeis.org

3, 7, 7, 7, 6, 4, 5, 3, 4, 1, 8, 5, 8, 5, 7, 5, 2, 4, 2, 8, 8, 1, 8, 1, 3, 1, 1, 3, 2, 6, 1, 0, 9, 6, 4, 7, 3, 3, 9, 5, 2, 2, 6, 7, 0, 2, 5, 2, 6, 4, 7, 8, 9, 6, 7, 0, 5, 1, 5, 4, 6, 1, 9, 2, 3, 5, 3, 5, 9, 9, 6, 8, 4, 4, 2, 4, 8, 2, 4, 5, 9, 6, 2, 5, 3, 3, 7, 5, 4, 0
Offset: 1

Views

Author

Paolo Xausa, Aug 01 2025

Keywords

Comments

The disphenocingulum is Johnson solid J_90.

Examples

			3.7776453418585752428818131132610964733952267025...
		

Crossrefs

Cf. A385257 (surface area + 2).

Programs

  • Mathematica
    First[RealDigits[Root[1213025622610333925376*#^24 + 54451372392730545094656*#^22 - 796837093078664749252608*#^20 - 4133410366404688544268288*#^18 + 20902529024429842816303104*#^16 - 133907540390420673677230080*#^14 + 246234688242991598853881856*#^12 - 63327534106871321714442240*#^10 + 14389309497459555704164608*#^8 + 48042947402464500749392128*#^6 - 5891096640600351061013664*#^4 - 3212114716816853362953264*#^2 + 479556973248657693884401 &, 8], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J90", "Volume"], 10, 100]]

Formula

Equals the largest real root of 1213025622610333925376*x^24 + 54451372392730545094656*x^22 - 796837093078664749252608*x^20 - 4133410366404688544268288*x^18 + 20902529024429842816303104*x^16 - 133907540390420673677230080*x^14 + 246234688242991598853881856*x^12 - 63327534106871321714442240*x^10 + 14389309497459555704164608*x^8 + 48042947402464500749392128*x^6 - 5891096640600351061013664*x^4 - 3212114716816853362953264*x^2 + 479556973248657693884401.