cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386754 Decimal expansion of the surface area of a triangular hebesphenorotunda with unit edges.

Original entry on oeis.org

1, 6, 3, 8, 8, 6, 7, 3, 5, 3, 7, 7, 1, 9, 0, 6, 7, 9, 1, 2, 5, 3, 2, 4, 0, 6, 0, 5, 4, 3, 1, 8, 7, 2, 2, 5, 4, 1, 2, 0, 0, 4, 4, 7, 4, 6, 5, 6, 2, 9, 9, 0, 2, 9, 7, 0, 8, 8, 6, 3, 6, 7, 2, 7, 3, 4, 6, 8, 2, 8, 8, 8, 0, 6, 9, 4, 3, 6, 9, 8, 8, 7, 0, 1, 3, 2, 7, 6, 8, 1
Offset: 2

Views

Author

Paolo Xausa, Aug 01 2025

Keywords

Comments

The triangular hebesphenorotunda is Johnson solid J_92.

Examples

			16.3886735377190679125324060543187225412004474656...
		

Crossrefs

Cf. A176324 (volume).

Programs

  • Mathematica
    First[RealDigits[(12 + 19*A002194 + 3*Sqrt[5*(5 + A010476)])/4, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J92", "SurfaceArea"], 10, 100]]

Formula

Equals (12 + 19*sqrt(3) + 3*sqrt(5*(5 + 2*sqrt(5))))/4 = (12 + 19*A002194 + 3*sqrt(5*(5 + A010476)))/4.
Equals the largest root of 256*x^8 - 6144*x^7 - 19200*x^6 + 1119744*x^5 - 1614816*x^4 - 57096576*x^3 + 76850100*x^2 + 856278216*x + 56001861.