A386756 a(n) is the number of sets of distinct four-cuboid combinations that fill an n X n X n cube excluding combinations that contain cube-shaped cuboids.
0, 0, 2, 10, 43, 81, 177, 260, 458, 605, 931, 1169, 1656, 1995, 2687, 3145, 4063, 4674, 5850, 6617, 8102, 9044, 10852, 12008, 14172, 15540, 18116, 19714, 22711, 24585, 28035, 30176, 34142, 36569, 41053, 43817, 48852, 51939, 57593, 61021, 67291, 71118, 78036, 82241, 89882
Offset: 1
Keywords
Examples
There are 12 sets of distinct four-cuboid combinations filling 4 X 4 X 4 cube according to A384311(4), only two combinations containing cubes listed below, {(1,1,1), (1,1,3), (1,3,4), (3,4,4)}, {(1,3,3), (3,3,3), (1,3,4), (1,4,4)}. Therefore, a(4) = 12-2 = 10.
Crossrefs
Cf. A384311.
Comments