This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386762 #14 Aug 12 2025 03:47:04 %S A386762 144,324,400,576,784,1600,1728,1936,2025,2304,2500,2704,2916,3136, %T A386762 3600,3969,4624,5625,5776,5832,6400,7056,7744,8000,8100,8464,9216, %U A386762 9604,9801,10816,12544,13456,13689,13824,14400,15376,15876,17424,18225,18496,19600,20736,21609 %N A386762 Perfect powers of nonsquarefree numbers k that are not squareful. %C A386762 A131605 is the union of this sequence, A303606, and A383394, where the three sequences do not intersect one another. %C A386762 A001597 is the union of A131605 and A246547. %C A386762 Superset of A368508 (i.e., perfect powers of superprimorials that are not powers of 2). %H A386762 Michael De Vlieger, <a href="/A386762/b386762.txt">Table of n, a(n) for n = 1..10000</a> %e A386762 Table of n, a(n) for n = 1..12: %e A386762 n a(n) %e A386762 ----------------------------- %e A386762 1 144 = 12^2 = 2^4 * 3^2 %e A386762 2 324 = 18^2 = 2^2 * 3^4 %e A386762 3 400 = 20^2 = 2^4 * 5^2 %e A386762 4 576 = 24^2 = 2^6 * 3^2 %e A386762 5 784 = 28^2 = 2^4 * 7^2 %e A386762 6 1600 = 40^2 = 2^6 * 5^2 %e A386762 7 1728 = 12^3 = 2^6 * 3^3 %e A386762 8 1936 = 44^2 = 2^4 * 11^2 %e A386762 9 2025 = 45^2 = 3^4 * 5^2 %e A386762 10 2304 = 48^2 = 2^8 * 3^2 %e A386762 11 2500 = 50^2 = 2^2 * 5^4 %e A386762 12 2704 = 52^2 = 2^4 * 13^2 %t A386762 nn = 2^15; i = 1; k = 2; MapIndexed[Set[S[First[#2]], #1] &, Select[Range@ Sqrt[nn], 1 == Min[#] < Max[#] &@ FactorInteger[#][[All, -1]] &] ]; Union@ Reap[While[j = 2; While[S[i]^j < nn, Sow[S[i]^j]; j++]; j > 2, k++; i++] ][[-1, 1]] %o A386762 (Python) %o A386762 from math import isqrt %o A386762 from sympy import mobius, integer_nthroot %o A386762 def A386762(n): %o A386762 def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1))) %o A386762 def bisection(f,kmin=0,kmax=1): %o A386762 while f(kmax) > kmax: kmax <<= 1 %o A386762 while f(kmin) < kmin: kmin >>= 1 %o A386762 kmin = max(kmin,kmax >> 1) %o A386762 while kmax-kmin > 1: %o A386762 kmid = kmax+kmin>>1 %o A386762 if f(kmid) <= kmid: %o A386762 kmax = kmid %o A386762 else: %o A386762 kmin = kmid %o A386762 return kmax %o A386762 def g(x): %o A386762 c, l, j = 1+x-squarefreepi(integer_nthroot(x,3)[0])-squarefreepi(x), 0, isqrt(x) %o A386762 while j>1: %o A386762 k2 = integer_nthroot(x//j**2,3)[0]+1 %o A386762 w = squarefreepi(k2-1) %o A386762 c += j*(l-w) %o A386762 l, j = w, isqrt(x//k2**3) %o A386762 return c+l %o A386762 def f(x): return n+x-sum(g(integer_nthroot(x, k)[0]) for k in range(2, x.bit_length())) %o A386762 return bisection(f,n,n) # _Chai Wah Wu_, Aug 11 2025 %Y A386762 Cf. A001597, A126706, A131605, A246547, A286708, A303606, A368508, A383394. %K A386762 nonn,easy %O A386762 1,1 %A A386762 _Michael De Vlieger_, Aug 02 2025