cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386782 a(n) = n^3*sigma_8(n).

This page as a plain text file.
%I A386782 #15 Aug 04 2025 04:11:57
%S A386782 0,1,2056,177174,4210752,48828250,364269744,1977327086,8623620608,
%T A386782 31385843307,100390882000,285311671942,746035774848,1792160396234,
%U A386782 4065384488816,8651096365500,17661175009280,34271896312546,64529293839192,116490258905078,205603651344000,350330949134964
%N A386782 a(n) = n^3*sigma_8(n).
%H A386782 Vincenzo Librandi, <a href="/A386782/b386782.txt">Table of n, a(n) for n = 0..10000</a>
%F A386782 G.f.: Sum_{k>=1} k^11*x^k*(x^(2*k) + 4*x^k + 1)/(1 - x^k)^4.
%F A386782 a(n) = n^3*A013956(n).
%F A386782 Dirichlet g.f.: zeta(s-3)*zeta(s-11). - _R. J. Mathar_, Aug 03 2025
%t A386782 Table[n^3*DivisorSigma[8, n], {n, 0, 30}]
%t A386782 nmax = 30; CoefficientList[Series[Sum[k^11*x^k*(x^(2*k) + 4*x^k + 1)/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x]
%o A386782 (Magma) [0] cat [n^3*DivisorSigma(8, n): n in [1..35]]; // _Vincenzo Librandi_, Aug 04 2025
%Y A386782 Cf. A282211, A386746, A282213, A386748, A282781, A386780, A386781.
%Y A386782 Cf. A013956, A386751, A386778.
%K A386782 nonn,mult
%O A386782 0,3
%A A386782 _Vaclav Kotesovec_, Aug 02 2025