cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386786 a(n) = n^4*sigma_6(n).

This page as a plain text file.
%I A386786 #15 Aug 03 2025 10:21:20
%S A386786 0,1,1040,59130,1065216,9766250,61495200,282477650,1090785280,
%T A386786 3491573931,10156900000,25937439242,62986222080,137858520410,
%U A386786 293776756000,577478362500,1116964192256,2015993983970,3631236888240,6131066388122,10403165760000,16702903444500,26974936811680
%N A386786 a(n) = n^4*sigma_6(n).
%H A386786 Vincenzo Librandi, <a href="/A386786/b386786.txt">Table of n, a(n) for n = 0..10000</a>
%F A386786 G.f.: Sum_{k>=1} k^4*x^k*(1 + 1013*x^k + 47840*x^(2*k) + 455192*x^(3*k) + 1310354*x^(4*k) + 1310354*x^(5*k) + 455192*x^(6*k) + 47840*x^(7*k) + 1013*x^(8*k) + x^(9*k))/(1 - x^k)^11.
%F A386786 a(n) = n^4*A013954(n).
%F A386786 Dirichlet g.f.: zeta(s-4)*zeta(s-10). - _R. J. Mathar_, Aug 03 2025
%t A386786 Table[n^4*DivisorSigma[6, n], {n, 0, 30}]
%t A386786 nmax = 30; CoefficientList[Series[Sum[k^4*x^k*(1 + 1013*x^k + 47840*x^(2*k) + 455192*x^(3*k) + 1310354*x^(4*k) + 1310354*x^(5*k) + 455192*x^(6*k) + 47840*x^(7*k) + 1013*x^(8*k) + x^(9*k))/(1 - x^k)^11, {k, 1, nmax}], {x, 0, nmax}], x]
%o A386786 (Magma) [0] cat [n^4*DivisorSigma(6, n): n in [1..35]]; // _Vincenzo Librandi_, Aug 03 2025
%Y A386786 Cf. A280022, A386783, A280025, A386784, A386785, A386787, A386788.
%Y A386786 Cf. A013954, A386750, A386777, A386780.
%K A386786 nonn,mult
%O A386786 0,3
%A A386786 _Vaclav Kotesovec_, Aug 02 2025