This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386789 #13 Aug 06 2025 18:09:33 %S A386789 1,0,2,0,3,6,0,4,20,20,0,5,45,105,70,0,6,84,336,504,252,0,7,140,840, %T A386789 2100,2310,924,0,8,216,1800,6600,11880,10296,3432,0,9,315,3465,17325, %U A386789 45045,63063,45045,12870,0,10,440,6160,40040,140140,280280,320320,194480,48620 %N A386789 Triangle read by rows: T(n, k) = binomial(n - 1, k - 1)*binomial(n + k, k). %H A386789 Paolo Xausa, <a href="/A386789/b386789.txt">Table of n, a(n) for n = 0..11475</a> (rows 0..150 of triangle, flattened). %F A386789 A357367(n, k) = n!*T(n, k). %e A386789 Triangle begins: %e A386789 [0] 1; %e A386789 [1] 0, 2; %e A386789 [2] 0, 3, 6; %e A386789 [3] 0, 4, 20, 20; %e A386789 [4] 0, 5, 45, 105, 70; %e A386789 [5] 0, 6, 84, 336, 504, 252; %e A386789 [6] 0, 7, 140, 840, 2100, 2310, 924; %e A386789 [7] 0, 8, 216, 1800, 6600, 11880, 10296, 3432; %e A386789 . %e A386789 Seen as an array A(n, k) = binomial(n + k - 1, n)*binomial(n + 2*k, k): %e A386789 [0] 1, 2, 6, 20, 70, 252, 924, ... [A000984] %e A386789 [1] 0, 3, 20, 105, 504, 2310, 10296, ... [A000917] %e A386789 [2] 0, 4, 45, 336, 2100, 11880, 63063, ... %e A386789 [3] 0, 5, 84, 840, 6600, 45045, 280280, ... %e A386789 [4] 0, 6, 140, 1800, 17325, 140140, 1009008, ... %e A386789 [5] 0, 7, 216, 3465, 40040, 378378, 3118752, ... %e A386789 [6] 0, 8, 315, 6160, 84084, 917280, 8576568, ... %p A386789 T := (n, k) -> binomial(n - 1, k - 1)*binomial(n + k, k): seq(seq(T(n, k), k = 0..n), n = 0..9); %t A386789 A386789[n_, k_] := Binomial[n - 1, k - 1]*Binomial[n + k, k]; %t A386789 Table[A386789[n, k], {n, 0, 10}, {k, 0, n}] (* _Paolo Xausa_, Aug 06 2025 *) %Y A386789 Cf. A176479 (row sums), A000984 (main diagonal), A181983 (alternating row sums), A386876 (central terms). %Y A386789 Cf. A000984, A000917, A357367. %K A386789 nonn,tabl %O A386789 0,3 %A A386789 _Peter Luschny_, Aug 06 2025